REVIEWS

Silicon-based FMCW signal generators: A review

Wei Deng1, 2, Haikun Jia1, 2 and Baoyong Chi1,

+ Author Affiliations

 Corresponding author: Baoyong Chi, Email: chibylxc@tsinghua.edu.cn (Corresponding author)

PDF

Turn off MathJax

Abstract: FMCW radars with high resolution necessities the generation of highly linear, low phase noise, and low spur chirp signals with large bandwidth and a short modulation period. This paper reviews recent research progress on silicon-based FMCW signal generators, identifies advances in architecture, fundamental design, performance analysis, and applications of the FMCW synthesizer.

Key words: sliconFMCWPLLsradarswirelesstwo-point modulationfast chirpdigital pre-distortion



[1]
Park J, Ryu H, Ha K W, et al. 76–81-GHz CMOS transmitter with a phase-locked-loop-based multichirp modulator for automotive radar. IEEE Trans Microw Theory Tech, 2015, 63, 1399 doi: 10.1109/TMTT.2015.2406071
[2]
Ginsburg B P, Subburaj K, Samala S, et al. A multimode 76-to-81GHz automotive radar transceiver with autonomous monitoring. 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018, 158
[3]
Chan W L, Long J R. A 60-GHz band 2 × 2 phased-array transmitter in 65-nm CMOS. IEEE J Solid-State Circuits, 2010, 45, 2682 doi: 10.1109/JSSC.2010.2077170
[4]
Song J H, Cui C L, Kim S K, et al. A low-phase-noise 77-GHz FMCW radar transmitter with a 12.8-GHz PLL and a ×6 frequency multiplier. IEEE Microw Wirel Compon Lett, 2016, 26, 540 doi: 10.1109/LMWC.2016.2574829
[5]
Feger R, Pfeffer C, Stelzer A. A frequency-division MIMO FMCW radar system based on delta–sigma modulated transmitters. IEEE Trans Microw Theory Tech, 2014, 62, 3572 doi: 10.1109/TMTT.2014.2364220
[6]
Fujibayashi T, Takeda Y, Wang W H, et al. A 76- to 81-GHz multi-channel radar transceiver. IEEE J Solid-State Circuits, 2017, 52, 2226 doi: 10.1109/JSSC.2017.2700359
[7]
Jia H K, Kuang L X, Zhu W, et al. A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar. IEEE J Solid-State Circuits, 2016, 51, 2299 doi: 10.1109/JSSC.2016.2580599
[8]
Hung C M, Lin A T, Peng B C, et al. Toward automotive surround-view radars. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 162
[9]
Wang Y, Tang K, Zhang Y, et al. A Ku-band 260 mW FMCW synthetic aperture radar TRX with 1.48 GHz BW in 65nm CMOS for micro-UAVs. IEEE ISSCC Dig Tech Papers, 2016, 240
[10]
Deng W, Wu R, Chen Z J, et al. A 35-GHz TX and RX front end with high TX output power for Ka-band FMCW phased-array radar transceivers in CMOS technology. IEEE Trans VLSI Syst, 2020, 28, 2089 doi: 10.1109/TVLSI.2020.3008423
[11]
Ma T K, Deng W, Chen Z P, et al. A CMOS 76–81-GHz 2-TX 3-RX FMCW radar transceiver based on mixed-mode PLL chirp generator. IEEE J Solid-State Circuits, 2020, 55, 233 doi: 10.1109/JSSC.2019.2950184
[12]
Chang H H, Hua I H, Liu S I. A spread-spectrum clock generator with triangular modulation. IEEE J Solid-State Circuits, 2003, 38, 673 doi: 10.1109/JSSC.2003.809521
[13]
Hsieh Y B, Kao Y H. A fully integrated spread-spectrum clock generator by using direct VCO modulation. IEEE Trans Circuits Syst I, 2008, 55, 1845 doi: 10.1109/TCSI.2008.918194
[14]
Li H S, Cheng Y C, Puar D. Dual-loop spread-spectrum clock generator. IEEE Int Solid-State Circuits Conf Dig Tech Papers, 1999, 184
[15]
Huang H Y, Ho S F, Huang L W. A 64-MHz – 1920-MHz programmable spread-spectrum clock generator. Proc IEEE Int Symp Circuit Syst, 2005, 3363
[16]
Mitomo T, Ono N, Hoshino H, et al. A 77 GHz 90 nm CMOS transceiver for FMCW radar applications. IEEE J Solid-State Circuits, 2010, 45, 928 doi: 10.1109/JSSC.2010.2040234
[17]
Kim Y, Reck T J, Alonso-Delpino M, et al. A Ku-band CMOS FMCW radar transceiver for snowpack remote sensing. IEEE Trans Microw Theory Tech, 2018, 66, 2480 doi: 10.1109/TMTT.2018.2799866
[18]
Lee J, Li Y A, Hung M H, et al. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits, 2010, 45, 2746 doi: 10.1109/JSSC.2010.2075250
[19]
Kokubo M, Kawamoto T, Oshima T, et al. Spread-spectrum clock generator for serial ATA using fractional PLL controlled by delta-sigma modulator with level shifter. 2005 IEEE Int Dig Tech Pap Solid-State Circuits Conf, 2005, 160
[20]
Lee H R, Kim O, Ahn G, et al. A low-jitter 5000 ppm spread spectrum clock generator for multi-channel SATA transceiver in 0.18 μm CMOS. 2005 IEEE International Digest of Technical Papers, Solid-State Circuits Conference, 2005, 162
[21]
Shen Z K, Jiang H Y, Li H Y, et al. A 12-GHz calibration-free all-digital PLL for FMCW signal generation with 78 MHz/μs chirp slope and high chirp linearity. IEEE Trans Circuits Syst I, 2020, 1 doi: 10.1109/TCSI.2020.3004363
[22]
Ng H J, Kucharski M, Ahmad W, et al. Multi-purpose fully differential 61- and 122-GHz radar transceivers for scalable MIMO sensor platforms. IEEE J Solid-State Circuits, 2017, 52, 2242 doi: 10.1109/JSSC.2017.2704602
[23]
Hasenaecker G, van Delden M, Jaeschke T, et al. A SiGe fractional-N frequency synthesizer for mm-wave wideband FMCW radar transceivers. IEEE Trans Microw Theory Tech, 2016, 64, 847 doi: 10.1109/TMTT.2016.2520469
[24]
Pohl N, Jaeschke T, Aufinger K. An ultra-wideband 80 GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer. IEEE Trans Microw Theory Tech, 2012, 60, 757 doi: 10.1109/TMTT.2011.2180398
[25]
Luo T N, Wu C H E, Chen Y J E. A 77-GHz CMOS FMCW frequency synthesizer with reconfigurable chirps. IEEE Trans Microw Theory Tech, 2013, 61, 2641 doi: 10.1109/TMTT.2013.2264685
[26]
Sakurai H, Kobayashi Y, Mitomo T, et al. A 1.5 GHz-modulation-range 10 ms-modulation-period 180 kHzrms-frequency-error 26 MHz-reference mixed-mode FMCW synthesizer for mm-wave radar application. 2011 IEEE International Solid-State Circuits Conference, 2011, 292
[27]
Wu J X, Deng W, Chen Z P, et al. A 77-GHz mixed-mode FMCW generator based on a vernier TDC with dual rising-edge fractional-phase detector. IEEE Trans Circuits Syst I, 2020, 67, 60 doi: 10.1109/TCSI.2019.2946277
[28]
Cherniak D, Grimaldi L, Bertulessi L, et al. A 23-GHz low-phase-noise digital bang–bang PLL for fast triangular and sawtooth chirp modulation. IEEE J Solid-State Circuits, 2018, 53, 3565 doi: 10.1109/JSSC.2018.2869097
[29]
Shi Q X, Bunsen K, Markulic N, et al. A self-calibrated 16-GHz subsampling-PLL-based fast-chirp FMCW modulator with 1.5-GHz bandwidth. IEEE J Solid-State Circuits, 2019, 54, 3503 doi: 10.1109/JSSC.2019.2941113
[30]
Cherniak D, Samori C, Nonis R, et al. PLL-based wideband frequency modulator: Two-point injection versus pre-emphasis technique. IEEE Trans Circuits Syst I, 2018, 65, 914 doi: 10.1109/TCSI.2017.2763581
[31]
Renukaswamy P T, Markulic N, Park S, et al. A 12 mW 10 GHz FMCW PLL based on an integrating DAC with 90 kHz rms frequency error for 23 MHz/μs slope and 1.2 GHz chirp bandwidth. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 278
[32]
Gao X, Klumperink E A M, Bohsali M, et al. A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2. IEEE J Solid-State Circuits, 2009, 44, 3253 doi: 10.1109/JSSC.2009.2032723
[33]
Narayanan A T, Katsuragi M, Kimura K, et al. A fractional-N sub-sampling PLL using a pipelined phase-interpolator with an FoM of –250 dB. IEEE J Solid-State Circuits, 2016, 51, 1630 doi: 10.1109/JSSC.2016.2539344
[34]
Wu W H, Staszewski R B, Long J R. A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J Solid-State Circuits, 2014, 49, 1081 doi: 10.1109/JSSC.2014.2301764
[35]
Yeo H, Ryu S, Lee Y, et al. A 940 MHz-bandwidth 28.8μs-period 8.9 GHz chirp frequency synthesizer PLL in 65nm CMOS for X-band FMCW radar applications. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 238
[36]
Lin J F, Song Z, Qi N, et al. A 77-GHz mixed-mode FMCW signal generator based on bang-bang phase detector. IEEE J Solid-State Circuits, 2018, 53, 2850 doi: 10.1109/JSSC.2018.2856248
[37]
Levantino S, Marzin G, Samori C. An adaptive pre-distortion technique to mitigate the DTC nonlinearity in digital PLLs. IEEE J Solid-State Circuits, 2014, 49, 1762 doi: 10.1109/JSSC.2014.2314436
[38]
Markulic N, Raczkowski K, Martens E, et al. A DTC-based subsampling PLL capable of self-calibrated fractional synthesis and two-point modulation. IEEE J Solid-State Circuits, 2016, 51, 3078 doi: 10.1109/JSSC.2016.2596766
[39]
Yao C W, Ni R H, Lau C, et al. A 14-nm 0.14-psrms fractional-N digital PLL with a 0.2-ps resolution ADC-assisted coarse/fine-conversion chopping TDC and TDC nonlinearity calibration. IEEE J Solid-State Circuits, 2017, 52, 3446 doi: 10.1109/JSSC.2017.2742518
[40]
Marzin G, Levantino S, Samori C, et al. A 20 Mb/s phase modulator based on a 3.6 GHz digital PLL with −36 dB EVM at 5 mW power. IEEE J Solid-State Circuits, 2012, 47, 2974 doi: 10.1109/JSSC.2012.2217854
[41]
Vovnoboy J, Levinger R, Mazor N, et al. A dual-loop synthesizer with fast frequency modulation ability for 77/79 GHz FMCW automotive radar applications. IEEE J Solid-State Circuits, 2018, 53, 1328 doi: 10.1109/JSSC.2017.2784758
Fig. 1.  Block diagram of the FMCW transceiver.

Fig. 2.  (Color online) FMCW principle of a sawtooth wave.

Fig. 3.  FMCW PLL using direct-modulating VCO.

Fig. 4.  Block diagram of DDFS-based FMCW generator.

Fig. 5.  Block diagram of the FMCW PLL using feedback modulation.

Fig. 6.  (Color online) Block diagram of the FMCW PLL using digital modulation.

Fig. 7.  Block diagram of the digital PLL based FMCW signal generator using TPM.

Fig. 8.  Simplified linear model of the digital PLL based FMCW signal generator.

Fig. 9.  (Color online) Block diagram of SSPLL based FMCW signal generator.

Fig. 10.  Block diagram of phase domain digital PLL based FMCW signal generator.

Fig. 11.  (Color online) Block diagram of the TPM digital PLL with gain mismatch.

Fig. 12.  Block diagram of the FMCW signal generator using a type-III frequency ramp estimator.

Fig. 13.  The concept of DCO pre-distortion scheme.

Fig. 14.  Block diagram of the TPM digital PLL with digital pre-distortion.

Fig. 15.  Adaptive piecewise-linear DPD in Ref. [40].

Fig. 16.  Adaptive piecewise-linear DPD in Ref. [28].

Table 1.   Performance summary of the state-of-the-art work.

Ref.TopologyRef. Freq. (MHz)Freq. (GHz)BW/Tchirp
(GHz/μs)
Rms FMerr
(kHz)
Max slope
(GHz/μs)
Norm. slope (GHz/μs)Phase noise1
(dBc/Hz)
WaveformPower (mW)Tech.
[28]TPM52220.2/1.28000.160.66−97Sawtooth triangular2065 nm CMOS
[29]TPM80161.5/102300.150.75−92.4Sawtooth triangular4428 nm CMOS
[2]TPM10002201/406000.0250.1−94Sawtooth triangular>12040 nm CMOS
[35]TPM276.890.95/8019000.0190.17−86.2Triangular14.865 nm CMOS
[34]TPM40601/2103840.470.06−88Triangular4865 nm CMOS
[41]Frac-N125201.25/508000.0250.1−97Sawtooth triangular240130 nm SiGe
1Normalized to 79 GHz. 2A clean-up PLL is required to generate the 1 GHz reference clock for FMCW synthesizer.
DownLoad: CSV
[1]
Park J, Ryu H, Ha K W, et al. 76–81-GHz CMOS transmitter with a phase-locked-loop-based multichirp modulator for automotive radar. IEEE Trans Microw Theory Tech, 2015, 63, 1399 doi: 10.1109/TMTT.2015.2406071
[2]
Ginsburg B P, Subburaj K, Samala S, et al. A multimode 76-to-81GHz automotive radar transceiver with autonomous monitoring. 2018 IEEE International Solid-State Circuits Conference (ISSCC), 2018, 158
[3]
Chan W L, Long J R. A 60-GHz band 2 × 2 phased-array transmitter in 65-nm CMOS. IEEE J Solid-State Circuits, 2010, 45, 2682 doi: 10.1109/JSSC.2010.2077170
[4]
Song J H, Cui C L, Kim S K, et al. A low-phase-noise 77-GHz FMCW radar transmitter with a 12.8-GHz PLL and a ×6 frequency multiplier. IEEE Microw Wirel Compon Lett, 2016, 26, 540 doi: 10.1109/LMWC.2016.2574829
[5]
Feger R, Pfeffer C, Stelzer A. A frequency-division MIMO FMCW radar system based on delta–sigma modulated transmitters. IEEE Trans Microw Theory Tech, 2014, 62, 3572 doi: 10.1109/TMTT.2014.2364220
[6]
Fujibayashi T, Takeda Y, Wang W H, et al. A 76- to 81-GHz multi-channel radar transceiver. IEEE J Solid-State Circuits, 2017, 52, 2226 doi: 10.1109/JSSC.2017.2700359
[7]
Jia H K, Kuang L X, Zhu W, et al. A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar. IEEE J Solid-State Circuits, 2016, 51, 2299 doi: 10.1109/JSSC.2016.2580599
[8]
Hung C M, Lin A T, Peng B C, et al. Toward automotive surround-view radars. 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, 162
[9]
Wang Y, Tang K, Zhang Y, et al. A Ku-band 260 mW FMCW synthetic aperture radar TRX with 1.48 GHz BW in 65nm CMOS for micro-UAVs. IEEE ISSCC Dig Tech Papers, 2016, 240
[10]
Deng W, Wu R, Chen Z J, et al. A 35-GHz TX and RX front end with high TX output power for Ka-band FMCW phased-array radar transceivers in CMOS technology. IEEE Trans VLSI Syst, 2020, 28, 2089 doi: 10.1109/TVLSI.2020.3008423
[11]
Ma T K, Deng W, Chen Z P, et al. A CMOS 76–81-GHz 2-TX 3-RX FMCW radar transceiver based on mixed-mode PLL chirp generator. IEEE J Solid-State Circuits, 2020, 55, 233 doi: 10.1109/JSSC.2019.2950184
[12]
Chang H H, Hua I H, Liu S I. A spread-spectrum clock generator with triangular modulation. IEEE J Solid-State Circuits, 2003, 38, 673 doi: 10.1109/JSSC.2003.809521
[13]
Hsieh Y B, Kao Y H. A fully integrated spread-spectrum clock generator by using direct VCO modulation. IEEE Trans Circuits Syst I, 2008, 55, 1845 doi: 10.1109/TCSI.2008.918194
[14]
Li H S, Cheng Y C, Puar D. Dual-loop spread-spectrum clock generator. IEEE Int Solid-State Circuits Conf Dig Tech Papers, 1999, 184
[15]
Huang H Y, Ho S F, Huang L W. A 64-MHz – 1920-MHz programmable spread-spectrum clock generator. Proc IEEE Int Symp Circuit Syst, 2005, 3363
[16]
Mitomo T, Ono N, Hoshino H, et al. A 77 GHz 90 nm CMOS transceiver for FMCW radar applications. IEEE J Solid-State Circuits, 2010, 45, 928 doi: 10.1109/JSSC.2010.2040234
[17]
Kim Y, Reck T J, Alonso-Delpino M, et al. A Ku-band CMOS FMCW radar transceiver for snowpack remote sensing. IEEE Trans Microw Theory Tech, 2018, 66, 2480 doi: 10.1109/TMTT.2018.2799866
[18]
Lee J, Li Y A, Hung M H, et al. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits, 2010, 45, 2746 doi: 10.1109/JSSC.2010.2075250
[19]
Kokubo M, Kawamoto T, Oshima T, et al. Spread-spectrum clock generator for serial ATA using fractional PLL controlled by delta-sigma modulator with level shifter. 2005 IEEE Int Dig Tech Pap Solid-State Circuits Conf, 2005, 160
[20]
Lee H R, Kim O, Ahn G, et al. A low-jitter 5000 ppm spread spectrum clock generator for multi-channel SATA transceiver in 0.18 μm CMOS. 2005 IEEE International Digest of Technical Papers, Solid-State Circuits Conference, 2005, 162
[21]
Shen Z K, Jiang H Y, Li H Y, et al. A 12-GHz calibration-free all-digital PLL for FMCW signal generation with 78 MHz/μs chirp slope and high chirp linearity. IEEE Trans Circuits Syst I, 2020, 1 doi: 10.1109/TCSI.2020.3004363
[22]
Ng H J, Kucharski M, Ahmad W, et al. Multi-purpose fully differential 61- and 122-GHz radar transceivers for scalable MIMO sensor platforms. IEEE J Solid-State Circuits, 2017, 52, 2242 doi: 10.1109/JSSC.2017.2704602
[23]
Hasenaecker G, van Delden M, Jaeschke T, et al. A SiGe fractional-N frequency synthesizer for mm-wave wideband FMCW radar transceivers. IEEE Trans Microw Theory Tech, 2016, 64, 847 doi: 10.1109/TMTT.2016.2520469
[24]
Pohl N, Jaeschke T, Aufinger K. An ultra-wideband 80 GHz FMCW radar system using a SiGe bipolar transceiver chip stabilized by a fractional-N PLL synthesizer. IEEE Trans Microw Theory Tech, 2012, 60, 757 doi: 10.1109/TMTT.2011.2180398
[25]
Luo T N, Wu C H E, Chen Y J E. A 77-GHz CMOS FMCW frequency synthesizer with reconfigurable chirps. IEEE Trans Microw Theory Tech, 2013, 61, 2641 doi: 10.1109/TMTT.2013.2264685
[26]
Sakurai H, Kobayashi Y, Mitomo T, et al. A 1.5 GHz-modulation-range 10 ms-modulation-period 180 kHzrms-frequency-error 26 MHz-reference mixed-mode FMCW synthesizer for mm-wave radar application. 2011 IEEE International Solid-State Circuits Conference, 2011, 292
[27]
Wu J X, Deng W, Chen Z P, et al. A 77-GHz mixed-mode FMCW generator based on a vernier TDC with dual rising-edge fractional-phase detector. IEEE Trans Circuits Syst I, 2020, 67, 60 doi: 10.1109/TCSI.2019.2946277
[28]
Cherniak D, Grimaldi L, Bertulessi L, et al. A 23-GHz low-phase-noise digital bang–bang PLL for fast triangular and sawtooth chirp modulation. IEEE J Solid-State Circuits, 2018, 53, 3565 doi: 10.1109/JSSC.2018.2869097
[29]
Shi Q X, Bunsen K, Markulic N, et al. A self-calibrated 16-GHz subsampling-PLL-based fast-chirp FMCW modulator with 1.5-GHz bandwidth. IEEE J Solid-State Circuits, 2019, 54, 3503 doi: 10.1109/JSSC.2019.2941113
[30]
Cherniak D, Samori C, Nonis R, et al. PLL-based wideband frequency modulator: Two-point injection versus pre-emphasis technique. IEEE Trans Circuits Syst I, 2018, 65, 914 doi: 10.1109/TCSI.2017.2763581
[31]
Renukaswamy P T, Markulic N, Park S, et al. A 12 mW 10 GHz FMCW PLL based on an integrating DAC with 90 kHz rms frequency error for 23 MHz/μs slope and 1.2 GHz chirp bandwidth. 2020 IEEE International Solid-State Circuits Conference (ISSCC), 2020, 278
[32]
Gao X, Klumperink E A M, Bohsali M, et al. A low noise sub-sampling PLL in which divider noise is eliminated and PD/CP noise is not multiplied by N2. IEEE J Solid-State Circuits, 2009, 44, 3253 doi: 10.1109/JSSC.2009.2032723
[33]
Narayanan A T, Katsuragi M, Kimura K, et al. A fractional-N sub-sampling PLL using a pipelined phase-interpolator with an FoM of –250 dB. IEEE J Solid-State Circuits, 2016, 51, 1630 doi: 10.1109/JSSC.2016.2539344
[34]
Wu W H, Staszewski R B, Long J R. A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J Solid-State Circuits, 2014, 49, 1081 doi: 10.1109/JSSC.2014.2301764
[35]
Yeo H, Ryu S, Lee Y, et al. A 940 MHz-bandwidth 28.8μs-period 8.9 GHz chirp frequency synthesizer PLL in 65nm CMOS for X-band FMCW radar applications. 2016 IEEE International Solid-State Circuits Conference (ISSCC), 2016, 238
[36]
Lin J F, Song Z, Qi N, et al. A 77-GHz mixed-mode FMCW signal generator based on bang-bang phase detector. IEEE J Solid-State Circuits, 2018, 53, 2850 doi: 10.1109/JSSC.2018.2856248
[37]
Levantino S, Marzin G, Samori C. An adaptive pre-distortion technique to mitigate the DTC nonlinearity in digital PLLs. IEEE J Solid-State Circuits, 2014, 49, 1762 doi: 10.1109/JSSC.2014.2314436
[38]
Markulic N, Raczkowski K, Martens E, et al. A DTC-based subsampling PLL capable of self-calibrated fractional synthesis and two-point modulation. IEEE J Solid-State Circuits, 2016, 51, 3078 doi: 10.1109/JSSC.2016.2596766
[39]
Yao C W, Ni R H, Lau C, et al. A 14-nm 0.14-psrms fractional-N digital PLL with a 0.2-ps resolution ADC-assisted coarse/fine-conversion chopping TDC and TDC nonlinearity calibration. IEEE J Solid-State Circuits, 2017, 52, 3446 doi: 10.1109/JSSC.2017.2742518
[40]
Marzin G, Levantino S, Samori C, et al. A 20 Mb/s phase modulator based on a 3.6 GHz digital PLL with −36 dB EVM at 5 mW power. IEEE J Solid-State Circuits, 2012, 47, 2974 doi: 10.1109/JSSC.2012.2217854
[41]
Vovnoboy J, Levinger R, Mazor N, et al. A dual-loop synthesizer with fast frequency modulation ability for 77/79 GHz FMCW automotive radar applications. IEEE J Solid-State Circuits, 2018, 53, 1328 doi: 10.1109/JSSC.2017.2784758
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6029 Times PDF downloads: 405 Times Cited by: 0 Times

    History

    Received: 11 August 2020 Revised: 18 September 2020 Online: Accepted Manuscript: 30 September 2020Uncorrected proof: 09 October 2020Published: 03 November 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wei Deng, Haikun Jia, Baoyong Chi. Silicon-based FMCW signal generators: A review[J]. Journal of Semiconductors, 2020, 41(11): 111401. doi: 10.1088/1674-4926/41/11/111401 W Deng, H K Jia, B Y Chi, Silicon-based FMCW signal generators: A review[J]. J. Semicond., 2020, 41(11): 111401. doi: 10.1088/1674-4926/41/11/111401.Export: BibTex EndNote
      Citation:
      Wei Deng, Haikun Jia, Baoyong Chi. Silicon-based FMCW signal generators: A review[J]. Journal of Semiconductors, 2020, 41(11): 111401. doi: 10.1088/1674-4926/41/11/111401

      W Deng, H K Jia, B Y Chi, Silicon-based FMCW signal generators: A review[J]. J. Semicond., 2020, 41(11): 111401. doi: 10.1088/1674-4926/41/11/111401.
      Export: BibTex EndNote

      Silicon-based FMCW signal generators: A review

      doi: 10.1088/1674-4926/41/11/111401
      More Information
      • Corresponding author: Email: chibylxc@tsinghua.edu.cn (Corresponding author)
      • Received Date: 2020-08-11
      • Revised Date: 2020-09-18
      • Published Date: 2020-11-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return