SEMICONDUCTOR DEVICES

A novel DTSCR with a variation lateral base doping structure to improve turn-on speed for ESD protection

Jizhi Liu1, , Zhiwei Liu1, Ze Jia1 and Juin. J Liou2

+ Author Affiliations

 Corresponding author: Liu Jizhi, Email:jzhliu@uestc.edu.cn

PDF

Abstract: The turn-on speed of electrostatic discharge (ESD) protection devices is very important for the protection of the ultrathin gate oxide. A double trigger silicon controlled rectifier device (DTSCR) can be used effectively for ESD protection because it can turn on relatively quickly. The turn-on process of the DTSCR is first studied, and a formula for calculating the turn-on time of the DTSCR is derived. It is found that the turn-on time of the DTSCR is determined mainly by the base transit time of the parasitic p-n-p and n-p-n transistors. Using the variation lateral base doping (VLBD) structure can reduce the base transit time, and a novel DTSCR device with a VLBD structure (VLBD_DTSCR) is proposed for ESD protection applications. The static-state and turn-on characteristics of the VLBD_DTSCR device are simulated. The simulation results show that the VLBD structure can introduce a built-in electric field in the base region of the parasitic n-p-n and p-n-p bipolar transistors to accelerate the transport of free-carriers through the base region. In the same process and layout area, the turn-on time of the VLBD_DTSCR device is at least 27% less than that of the DTSCR device with the traditional uniform base doping under the same value of the trigger current.

Key words: electrostatic discharge (ESD)double triggered silicon controlled rectifier (DTSCR)variation lateral base doping (VLBD)built-in electric fieldturn-on speed



[1]
Ker M D, Hsu K C. Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits. IEEE Trans Device Mater Rel, 2005, 5(2):235 doi: 10.1109/TDMR.2005.846824
[2]
Wu J, Juliano P, Rosenbaum E. Breakdown and latent damage of ultra-thin gate oxides under ESD stress conditions. Proc EOS/ESD Symp, Anaheim, CA, 2000:287 http://www.doc88.com/p-598167111306.html
[3]
ESD Association. ESD Association Standard Test Method for Electrostatic Discharge Sensitivity Testing: Charged Device Model-Component Level, ESD STM 5. 3. 1, 1999
[4]
Ker M D, Hsu K C. Substrate-triggered SCR device for on-chip ESD protection in fully silicided sub-0.25-μm CMOS process. IEEE Trans Electron Devices, 2003, 50(2):397 doi: 10.1109/TED.2003.809028
[5]
Mergens M P J, Russ C C, Verhaege K G, et al. Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies. IEEE Trans Device Mater Reliab, 2005, 5(3):532 doi: 10.1109/TDMR.2005.853510
[6]
Russ C, Mergens M P J, Armer J, et al. GGSCR:GGNMOS triggered silicon controlled rectifiers for ESD protection in deep submicron CMOS processes. Proc EOS/ESD Symp, 2001:22 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5254990
[7]
Mergens M P J, Russ C C, Verhage K G, et al. High holding current SCRs (HHI-SCR) for ESD protection and latch-up immune IC operation. Proc EOS/ESD Symp, 2002:10 https://core.ac.uk/display/24706588
[8]
Ker M D, Hsu K C. Latchup-free ESD protection design with complementary substrate-triggered SCR devices. IEEE J Solid-State Circuits, 2003, 38(8):1380 doi: 10.1109/JSSC.2003.814434
[9]
Lin C Y, Chu L W, Ker M D, et al. ESD protection structure with inductor-triggered SCR for RF applications in 65-nm CMOS process. Proc IRPS Symp, 2012:EL.3.1 http://ieeexplore.ieee.org/document/6241893/authors
[10]
Ker M D, Hsu K C. SCR devices with double-triggered technique for on-chip ESD protection in sub-quarter-micron silicided CMOS processes. IEEE Trans Device Mater Reliab, 2003, 3(3):58 doi: 10.1109/TDMR.2003.815192
[11]
Kuhn W, Kuhn W, Eatinger R, et al. ESD detection circuit and associated metal fuse investigations in CMOS processes. IEEE Trans Device Mater Reliab, 2014, PP(1):1 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6697836&punumber%3D7298
[12]
Liu H, Yang Z, Zhuo Q. Two ESD detection circuits for 3x VDD-tolerant I/O buffer in low-voltage CMOS processes with low leakage currents. IEEE Trans Device Mater Reliab, 2013, 13(1):319 doi: 10.1109/TDMR.2012.2218606
[13]
Altolaguirre F A, Ker M D. Power-rail ESD clamp circuit with diode-string ESD detection to overcome the gate leakage current in a 40-nm CMOS process. IEEE Trans Electron Devices, 2013, 60(10):3500 doi: 10.1109/TED.2013.2274701
[14]
Yeh C T, Ker M D. High area-efficient ESD clamp circuit with equivalent RC-based detection mechanism in a 65-nm CMOS process. IEEE Trans Electron Devices, 2013, 60(3):1011 doi: 10.1109/TED.2013.2241441
[15]
Yeh C T, Ker M D. ESD-transient detection circuit with equivalent capacitance-coupling detection mechanism and high efficiency of layout area in a 65nm CMOS technology. Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), 2013:1 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=6635907&punumber%3D6619544
[16]
Muller R S, Kamins T I. Device electronics for integrated circuits. 3rd ed. New York:Wiley, 2002:337
[17]
Chen X B, Zhang Q Z, Chen Y. Microelectric devices. 2nd ed. Beijing:Electronic Industry Press, 2005:91
[18]
Webster W M. On the variation of junction-transistor current-amplification factor with emitter current. Proc IRE, 1954:914 http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4051702&arnumber=4051728&count=36&index=23
[19]
Baliga B J. Fundamentals of power semiconductor devices. New York:Springer, 2008:662
[20]
Merchant S. Arbitrary lateral diffusion profiles. IEEE Trans Electron Devices, 1995, 42(12):2226 doi: 10.1109/16.477783
[21]
Stengl R, Gösele U. Variation of lateral doping-a new concept to avoid high-voltage breakdown of planar junctions. IEDM Tech Dig, 1985:154 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1485467
[22]
Zhang S, Sin J K O, Lai T M L, et al. Numerical modeling of linear doping profiles for high-voltage thin-film SOI devices. IEEE Trans Electron Devices, 1999, 46(9):1036 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=760414&pageNumber%3D31914%26rowsPerPage%3D100
[23]
Hardikar S, Tadikonda R, Green D W, et al. Realizing high-voltage junction isolated LDMOS transistors with variation in lateral doping. IEEE Trans Electron Devices, 2004, 51(12):2223 doi: 10.1109/TED.2004.839104
[24]
Sarro J D, Chatty K, Gauthier R, et al. Study of design factors affecting turn-on time of silicon controlled rectifiers (SCRs) in 90nm and 60nm bulk CMOS technologies. Proc IRPS Symp, 2006:163 http://ieeexplore.ieee.org/document/4017151/
Fig. 1.  Schematic Cross section of DTSCR structure.

Fig. 2.  Schematic cross section of 1-D DTSCR.

Fig. 3.  (a) Doping profile. (b) $I$-$V$ characteristics of the ULBD_DTSCRs. (c) $I$-$V$ characteristics of the VLBD_DTSCRs.

Fig. 4.  Test circuit for the turn-on time of DTSCRs.

Fig. 5.  Diagram of the output characteristics of DTSCR.

Fig. 6.  Two-dimensional simulation results for ULBD_DTSCR at the work point A. (a) Hole mean velocity distributions. (b) Hole density distributions.

Fig. 7.  Two-dimensional simulation results for VLBD_DTSCR at work point A. (a) Hole mean velocity distributions. (b) Hole density distributions.

Fig. 8.  Two-dimensional simulation results for ULBD_DTSCR at work point B. (a) Hole mean velocity distributions. (c) Hole density distributions.

Fig. 9.  Two-dimensional simulation results for VLBD_DTSCR at work point B. (a) Hole mean velocity distributions. (b) Hole density distributions.

Fig. 10.  Two-dimensional simulation results for ULBD_DTSCR at work point C. (a) Hole mean velocity distributions. (b) Hole density distributions.

Fig. 11.  Two-dimensional simulation results for VLBD_DTSCR at work point C. (a) Hole mean velocity distributions. (b) Hole density distributions.

Fig. 12.  (a) Turn-on times of the ULBD_DTSCR. (b) Turn-on times of the VLBD_DTSCR. (c) Dependence of the turn-on time of ULBD_DTSCR and VLBD_DTSCR on the trigger currents.

Fig. 13.  Simulation results of VLBD_DTSCRs with different characteristic lengths of Gaussian base doping profile. (a) Base doping profile. (b) The turn-on process. The legends, namely, "$C_1$", "$C_2$" and "$C_3$", denote that the characteristic lengths of the Gaussian base doping profile are 2.0, 2.5, and 3.0 $\mu $m, respectively.

Fig. 14.  Simulation results of VLBD_DTSCRs with different base doping peak positions. (a) Base doping profiles. (b) $V_{\rm A}$ versus time. The legends, namely, "P1", "P2", "P3", "P4", "P5", "P6" and "P7", denote that the base doping peak distances to the leftmost are 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 $\mu $m.

[1]
Ker M D, Hsu K C. Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits. IEEE Trans Device Mater Rel, 2005, 5(2):235 doi: 10.1109/TDMR.2005.846824
[2]
Wu J, Juliano P, Rosenbaum E. Breakdown and latent damage of ultra-thin gate oxides under ESD stress conditions. Proc EOS/ESD Symp, Anaheim, CA, 2000:287 http://www.doc88.com/p-598167111306.html
[3]
ESD Association. ESD Association Standard Test Method for Electrostatic Discharge Sensitivity Testing: Charged Device Model-Component Level, ESD STM 5. 3. 1, 1999
[4]
Ker M D, Hsu K C. Substrate-triggered SCR device for on-chip ESD protection in fully silicided sub-0.25-μm CMOS process. IEEE Trans Electron Devices, 2003, 50(2):397 doi: 10.1109/TED.2003.809028
[5]
Mergens M P J, Russ C C, Verhaege K G, et al. Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies. IEEE Trans Device Mater Reliab, 2005, 5(3):532 doi: 10.1109/TDMR.2005.853510
[6]
Russ C, Mergens M P J, Armer J, et al. GGSCR:GGNMOS triggered silicon controlled rectifiers for ESD protection in deep submicron CMOS processes. Proc EOS/ESD Symp, 2001:22 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5254990
[7]
Mergens M P J, Russ C C, Verhage K G, et al. High holding current SCRs (HHI-SCR) for ESD protection and latch-up immune IC operation. Proc EOS/ESD Symp, 2002:10 https://core.ac.uk/display/24706588
[8]
Ker M D, Hsu K C. Latchup-free ESD protection design with complementary substrate-triggered SCR devices. IEEE J Solid-State Circuits, 2003, 38(8):1380 doi: 10.1109/JSSC.2003.814434
[9]
Lin C Y, Chu L W, Ker M D, et al. ESD protection structure with inductor-triggered SCR for RF applications in 65-nm CMOS process. Proc IRPS Symp, 2012:EL.3.1 http://ieeexplore.ieee.org/document/6241893/authors
[10]
Ker M D, Hsu K C. SCR devices with double-triggered technique for on-chip ESD protection in sub-quarter-micron silicided CMOS processes. IEEE Trans Device Mater Reliab, 2003, 3(3):58 doi: 10.1109/TDMR.2003.815192
[11]
Kuhn W, Kuhn W, Eatinger R, et al. ESD detection circuit and associated metal fuse investigations in CMOS processes. IEEE Trans Device Mater Reliab, 2014, PP(1):1 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6697836&punumber%3D7298
[12]
Liu H, Yang Z, Zhuo Q. Two ESD detection circuits for 3x VDD-tolerant I/O buffer in low-voltage CMOS processes with low leakage currents. IEEE Trans Device Mater Reliab, 2013, 13(1):319 doi: 10.1109/TDMR.2012.2218606
[13]
Altolaguirre F A, Ker M D. Power-rail ESD clamp circuit with diode-string ESD detection to overcome the gate leakage current in a 40-nm CMOS process. IEEE Trans Electron Devices, 2013, 60(10):3500 doi: 10.1109/TED.2013.2274701
[14]
Yeh C T, Ker M D. High area-efficient ESD clamp circuit with equivalent RC-based detection mechanism in a 65-nm CMOS process. IEEE Trans Electron Devices, 2013, 60(3):1011 doi: 10.1109/TED.2013.2241441
[15]
Yeh C T, Ker M D. ESD-transient detection circuit with equivalent capacitance-coupling detection mechanism and high efficiency of layout area in a 65nm CMOS technology. Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), 2013:1 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=6635907&punumber%3D6619544
[16]
Muller R S, Kamins T I. Device electronics for integrated circuits. 3rd ed. New York:Wiley, 2002:337
[17]
Chen X B, Zhang Q Z, Chen Y. Microelectric devices. 2nd ed. Beijing:Electronic Industry Press, 2005:91
[18]
Webster W M. On the variation of junction-transistor current-amplification factor with emitter current. Proc IRE, 1954:914 http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4051702&arnumber=4051728&count=36&index=23
[19]
Baliga B J. Fundamentals of power semiconductor devices. New York:Springer, 2008:662
[20]
Merchant S. Arbitrary lateral diffusion profiles. IEEE Trans Electron Devices, 1995, 42(12):2226 doi: 10.1109/16.477783
[21]
Stengl R, Gösele U. Variation of lateral doping-a new concept to avoid high-voltage breakdown of planar junctions. IEDM Tech Dig, 1985:154 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1485467
[22]
Zhang S, Sin J K O, Lai T M L, et al. Numerical modeling of linear doping profiles for high-voltage thin-film SOI devices. IEEE Trans Electron Devices, 1999, 46(9):1036 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=760414&pageNumber%3D31914%26rowsPerPage%3D100
[23]
Hardikar S, Tadikonda R, Green D W, et al. Realizing high-voltage junction isolated LDMOS transistors with variation in lateral doping. IEEE Trans Electron Devices, 2004, 51(12):2223 doi: 10.1109/TED.2004.839104
[24]
Sarro J D, Chatty K, Gauthier R, et al. Study of design factors affecting turn-on time of silicon controlled rectifiers (SCRs) in 90nm and 60nm bulk CMOS technologies. Proc IRPS Symp, 2006:163 http://ieeexplore.ieee.org/document/4017151/
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2331 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 22 December 2013 Revised: 09 January 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jizhi Liu, Zhiwei Liu, Ze Jia, Juin. J Liou. A novel DTSCR with a variation lateral base doping structure to improve turn-on speed for ESD protection[J]. Journal of Semiconductors, 2014, 35(6): 064010. doi: 10.1088/1674-4926/35/6/064010 J Z Liu, Z W Liu, Z Jia, Juin. J J Liou. A novel DTSCR with a variation lateral base doping structure to improve turn-on speed for ESD protection[J]. J. Semicond., 2014, 35(6): 064010. doi:  10.1088/1674-4926/35/6/064010.Export: BibTex EndNote
      Citation:
      Jizhi Liu, Zhiwei Liu, Ze Jia, Juin. J Liou. A novel DTSCR with a variation lateral base doping structure to improve turn-on speed for ESD protection[J]. Journal of Semiconductors, 2014, 35(6): 064010. doi: 10.1088/1674-4926/35/6/064010

      J Z Liu, Z W Liu, Z Jia, Juin. J J Liou. A novel DTSCR with a variation lateral base doping structure to improve turn-on speed for ESD protection[J]. J. Semicond., 2014, 35(6): 064010. doi:  10.1088/1674-4926/35/6/064010.
      Export: BibTex EndNote

      A novel DTSCR with a variation lateral base doping structure to improve turn-on speed for ESD protection

      doi: 10.1088/1674-4926/35/6/064010
      Funds:

      the Chinese Universities Scientific Fund ZYGX2011J030

      Project supported by the Chinese Universities Scientific Fund (No. ZYGX2011J030)

      More Information
      • Corresponding author: Liu Jizhi, Email:jzhliu@uestc.edu.cn
      • Received Date: 2013-12-22
      • Revised Date: 2014-01-09
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return