SEMICONDUCTOR PHYSICS

Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis

S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf and M.S. Aida

+ Author Affiliations

 Corresponding author: M. S. Aida, Email:aida_salah2@yahoo.fr

PDF

Abstract: Cu2ZnSnS4 (CZTS)/ZnS heterojunctions have been prepared by a successive deposition of ZnS and CZTS thin films by ultrasonic spray pyrolysis technique on glass substrates. The cupric chloride concentration has been varied in the starting solution in order to investigate its influence on device properties. CZTS/ZnS heterojunctions were characterized by recording their current-voltage characteristics at different temperatures. The obtained results exhibit a good rectifying behavior of the realized heterojunction. Analysis of these results yields saturation current, series resistance and ideality factor determination. From the activation energy of saturation current we inferred that the thermal emission through the barrier height is the dominant mechanism of the reverse current rather than the defects contribution.

Key words: CZTSheterojunctionspray pyrolysissolar cells



[1]
Repinsl I, Contreras M A, Egaas B, et al. Characterization of 19.9%-efficient CIGS Absorbers. Prog Photovoltaics: Res Appl, 2008, 16: 235 doi: 10.1002/pip.v16:3
[2]
Ito K, Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn J Appl Phys, 1988, 27: 2094 doi: 10.1143/JJAP.27.2094
[3]
Benyahia K, Benhaya A, Aida M S. ZnS thin films deposition by thermal evaporation for photovoltaic applications. Journal of Semiconductors, 2015, 36(10): 103001 doi: 10.1088/1674-4926/36/10/103001
[4]
Fang X, Wu L, Hu L. ZnS Nanostructure arrays: a developing material star. Adv Mater, 2011, 23: 585 doi: 10.1002/adma.201003624
[5]
Mahmood K, Asghar M, Amin N, et al. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. Journal of Semiconductors, 2015, 36(3): 033001 doi: 10.1088/1674-4926/36/3/033001
[6]
Shockley W, Queisser H J. Detailed balance limit of efficiency of pn junction solar cells. J Appl Phys, 1961, 32: 510 doi: 10.1063/1.1736034
[7]
Katagiri H, Sasaguchi N, Hando S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-b evaporated precursors. Sol Energy Mater Sol Cells, 1997, 49: 407 doi: 10.1016/S0927-0248(97)00119-0
[8]
Katagiri H, Saitoh K, Washio T, et al. Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells, 2001, 65: 141 doi: 10.1016/S0927-0248(00)00088-X
[9]
Moholkar A V, Shinde S S, Babar A R, et al. Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate. Solar Energy, 2011, 85: 1354 doi: 10.1016/j.solener.2011.03.017
[10]
Washio T, Shinji T, Tajima S, et al. 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J Mater Chem, 2012, 22: 4021 doi: 10.1039/c2jm16454j
[11]
Patel M, Mukhopadhyay I, Ray A. Study of junction and carrier lifetime properties of spray deposited CZTS thin-film solar cell. Semicond Sci Technol, 2013, 28: 055001 doi: 10.1088/0268-1242/28/5/055001
[12]
Rodriguez M E, Placidi M, Galan O V, et al. Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis. Thin Solid Films, 2013, 535: 67 doi: 10.1016/j.tsf.2012.12.082
[13]
Lampert C M. Heat mirror coatings for energy conserving windows. Sol Energy Mater, 1981, 6: 11
[14]
Todorov T, Kita M, Carda J, et al. Cu2ZnSnS4 films deposited by a soft-chemistry method. Thin Solid Films, 2009, 517: 2541 doi: 10.1016/j.tsf.2008.11.035
[15]
Bougrine A, Hichou A E, Abdou M, et al. Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis. Mater Chem Phys, 2003, 80: 438 doi: 10.1016/S0254-0584(02)00505-9
[16]
Tanaka T, Kawasaki D, Nishio M, et al. Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys Status Solidi B, 2006, 203: 2844
[17]
Gou H, Gao F, Zhang J. Structural identification, electronic and optical properties of ZnSnO3}: first principle calculations. Comput Mater Sci, 2010, 49: 552 doi: 10.1016/j.commatsci.2010.05.049
[18]
Kask E, Raadik T, Grossberg M, et al. Deep defects in Cu2ZnSnS4 monograin solar cells. Energy Procedia, 2011, 10: 261 doi: 10.1016/j.egypro.2011.10.188
[19]
Van Puyvelde L, Lauwaert J, Smet P E, et al. Photoluminescence investigation of Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2015, 582: 146 doi: 10.1016/j.tsf.2014.10.079
[20]
Miyamoto Y, Tanaka K, Oonuki L, et al. Optical properties of Cu2ZnSnS4 thin films prepared by sol-gel and sulfurization method. Jpn J Appl Phys, 2013, 47: 596
[21]
Leitão J P, Santos N M, Fernandes P A, et al. Photoluminescence and electrical study of fluctuating potentials in CuZnSnS-based thin films. Phys Rev B, 2011, 84: 024120 doi: 10.1103/PhysRevB.84.024120
[22]
Tanaka K, Miyamoto Y, Uchiki H, et al. Donor-acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals. Phys Status Solidi B, 2006, 203: 2891 doi: 10.1002/pssa.v203:11
[23]
Yoo H, Kim J, Zhang L. Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film. Curr Appl Phys, 2012, 12: 1052 doi: 10.1016/j.cap.2012.01.006
[24]
Zhao Zongyan, Zhao Xiang. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. Journal of Semiconductors, 2015, 36(8): 083004 doi: 10.1088/1674-4926/36/8/083004
[25]
Sun Ding, Xu Shengzhi, Zhang Li, et al. Influence of selenium evaporation temperature on the structure of Cu2ZnSnSe4 thin film deposited by a co-evaporation process. Journal of Semiconductors, 2015, 36(4): 044009 doi: 10.1088/1674-4926/36/4/044009
[26]
Li W, Chen J, Yan C, et al. The effect of ZnS segregation on Zn-rich CZTS thin film solar cells. J Alloys Compd, 2015, 632: 178 doi: 10.1016/j.jallcom.2015.01.205
[27]
Solanki C S. Solar photopholtaics fundamentals, technologies and applications. New Delhi: PHI Learning Private Limited, 2009
[28]
Shah J M, Li Y L, Gessmann T, et al. Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes. J Appl Phys, 2003, 94: 2627 doi: 10.1063/1.1593218
Fig. 1.  XRD diffraction pattern of CZTS thin film prepared with spray pyrolysis using 0.01 Cu salt concentration and substrate temperature of 280 ℃.

Fig. 2.  (a) SEM image of CZTS thin film prepared with spray pyrolysis using 0.01 Cu salt concentration and substrate temperature of 280 ℃ and (b) related EDS composition spectra.

Fig. 3.  IV characteristics CZTS/ZnS heterojunctions prepared with different salt concentration: cupric chloride case.

Fig. 4.  Influence of measurement temperature upon IV characteristics of CZTS/ZnS heterojunction prepared with Cu salt molarity 0.01 M.

Fig. 5.  Variation of the saturation current as a function of temperature measured in the different heterojunctions.

Fig. 6.  Sketch of CZTS/ZnS band diagram.

Fig. 7.  CV characteristics of CZTS/ZnS heterojunction prepared with various Cu salt molarities.

Table 1.   Properties of CZTS layers prepared with different Cu salt concentration.

Table 2.   Variation of the saturation current, ideality factor and potential barrier as a function of different cupric chloride salt concentration.

[1]
Repinsl I, Contreras M A, Egaas B, et al. Characterization of 19.9%-efficient CIGS Absorbers. Prog Photovoltaics: Res Appl, 2008, 16: 235 doi: 10.1002/pip.v16:3
[2]
Ito K, Nakazawa T. Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn J Appl Phys, 1988, 27: 2094 doi: 10.1143/JJAP.27.2094
[3]
Benyahia K, Benhaya A, Aida M S. ZnS thin films deposition by thermal evaporation for photovoltaic applications. Journal of Semiconductors, 2015, 36(10): 103001 doi: 10.1088/1674-4926/36/10/103001
[4]
Fang X, Wu L, Hu L. ZnS Nanostructure arrays: a developing material star. Adv Mater, 2011, 23: 585 doi: 10.1002/adma.201003624
[5]
Mahmood K, Asghar M, Amin N, et al. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing. Journal of Semiconductors, 2015, 36(3): 033001 doi: 10.1088/1674-4926/36/3/033001
[6]
Shockley W, Queisser H J. Detailed balance limit of efficiency of pn junction solar cells. J Appl Phys, 1961, 32: 510 doi: 10.1063/1.1736034
[7]
Katagiri H, Sasaguchi N, Hando S, et al. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of e-b evaporated precursors. Sol Energy Mater Sol Cells, 1997, 49: 407 doi: 10.1016/S0927-0248(97)00119-0
[8]
Katagiri H, Saitoh K, Washio T, et al. Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells, 2001, 65: 141 doi: 10.1016/S0927-0248(00)00088-X
[9]
Moholkar A V, Shinde S S, Babar A R, et al. Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate. Solar Energy, 2011, 85: 1354 doi: 10.1016/j.solener.2011.03.017
[10]
Washio T, Shinji T, Tajima S, et al. 6% efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J Mater Chem, 2012, 22: 4021 doi: 10.1039/c2jm16454j
[11]
Patel M, Mukhopadhyay I, Ray A. Study of junction and carrier lifetime properties of spray deposited CZTS thin-film solar cell. Semicond Sci Technol, 2013, 28: 055001 doi: 10.1088/0268-1242/28/5/055001
[12]
Rodriguez M E, Placidi M, Galan O V, et al. Compositional optimization of photovoltaic grade Cu2ZnSnS4 films grown by pneumatic spray pyrolysis. Thin Solid Films, 2013, 535: 67 doi: 10.1016/j.tsf.2012.12.082
[13]
Lampert C M. Heat mirror coatings for energy conserving windows. Sol Energy Mater, 1981, 6: 11
[14]
Todorov T, Kita M, Carda J, et al. Cu2ZnSnS4 films deposited by a soft-chemistry method. Thin Solid Films, 2009, 517: 2541 doi: 10.1016/j.tsf.2008.11.035
[15]
Bougrine A, Hichou A E, Abdou M, et al. Structural, optical and cathodoluminescence characteristics of undoped and tin-doped ZnO thin films prepared by spray pyrolysis. Mater Chem Phys, 2003, 80: 438 doi: 10.1016/S0254-0584(02)00505-9
[16]
Tanaka T, Kawasaki D, Nishio M, et al. Fabrication of Cu2ZnSnS4 thin films by co-evaporation. Phys Status Solidi B, 2006, 203: 2844
[17]
Gou H, Gao F, Zhang J. Structural identification, electronic and optical properties of ZnSnO3}: first principle calculations. Comput Mater Sci, 2010, 49: 552 doi: 10.1016/j.commatsci.2010.05.049
[18]
Kask E, Raadik T, Grossberg M, et al. Deep defects in Cu2ZnSnS4 monograin solar cells. Energy Procedia, 2011, 10: 261 doi: 10.1016/j.egypro.2011.10.188
[19]
Van Puyvelde L, Lauwaert J, Smet P E, et al. Photoluminescence investigation of Cu2ZnSnS4 thin film solar cells. Thin Solid Films, 2015, 582: 146 doi: 10.1016/j.tsf.2014.10.079
[20]
Miyamoto Y, Tanaka K, Oonuki L, et al. Optical properties of Cu2ZnSnS4 thin films prepared by sol-gel and sulfurization method. Jpn J Appl Phys, 2013, 47: 596
[21]
Leitão J P, Santos N M, Fernandes P A, et al. Photoluminescence and electrical study of fluctuating potentials in CuZnSnS-based thin films. Phys Rev B, 2011, 84: 024120 doi: 10.1103/PhysRevB.84.024120
[22]
Tanaka K, Miyamoto Y, Uchiki H, et al. Donor-acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals. Phys Status Solidi B, 2006, 203: 2891 doi: 10.1002/pssa.v203:11
[23]
Yoo H, Kim J, Zhang L. Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film. Curr Appl Phys, 2012, 12: 1052 doi: 10.1016/j.cap.2012.01.006
[24]
Zhao Zongyan, Zhao Xiang. Electronic, optical, and mechanical properties of Cu2ZnSnS4 with four crystal structures. Journal of Semiconductors, 2015, 36(8): 083004 doi: 10.1088/1674-4926/36/8/083004
[25]
Sun Ding, Xu Shengzhi, Zhang Li, et al. Influence of selenium evaporation temperature on the structure of Cu2ZnSnSe4 thin film deposited by a co-evaporation process. Journal of Semiconductors, 2015, 36(4): 044009 doi: 10.1088/1674-4926/36/4/044009
[26]
Li W, Chen J, Yan C, et al. The effect of ZnS segregation on Zn-rich CZTS thin film solar cells. J Alloys Compd, 2015, 632: 178 doi: 10.1016/j.jallcom.2015.01.205
[27]
Solanki C S. Solar photopholtaics fundamentals, technologies and applications. New Delhi: PHI Learning Private Limited, 2009
[28]
Shah J M, Li Y L, Gessmann T, et al. Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes. J Appl Phys, 2003, 94: 2627 doi: 10.1063/1.1593218
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2912 Times PDF downloads: 47 Times Cited by: 0 Times

    History

    Received: 15 April 2016 Revised: 06 July 2016 Online: Published: 01 December 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, M.S. Aida. Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis[J]. Journal of Semiconductors, 2016, 37(12): 122001. doi: 10.1088/1674-4926/37/12/122001 S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, M.S. Aida. Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis[J]. J. Semicond., 2016, 37(12): 122001. doi: 10.1088/1674-4926/37/12/122001.Export: BibTex EndNote
      Citation:
      S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, M.S. Aida. Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis[J]. Journal of Semiconductors, 2016, 37(12): 122001. doi: 10.1088/1674-4926/37/12/122001

      S. Guitouni, M. Khammar, M. Messaoudi, N. Attaf, M.S. Aida. Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis[J]. J. Semicond., 2016, 37(12): 122001. doi: 10.1088/1674-4926/37/12/122001.
      Export: BibTex EndNote

      Electrical properties of Cu4ZnSnS2/ZnS heterojunction prepared by ultrasonic spray pyrolysis

      doi: 10.1088/1674-4926/37/12/122001
      More Information
      • Corresponding author: M. S. Aida, Email:aida_salah2@yahoo.fr
      • Received Date: 2016-04-15
      • Revised Date: 2016-07-06
      • Published Date: 2016-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return