SEMICONDUCTOR DEVICES

Analysis of mode characteristics for microcircular resonators confined by different metallic materials

Qifeng Yao1, 2, Yongzhen Huang1, , Yuede Yang1 and Jinlong Xiao1

+ Author Affiliations

 Corresponding author: Huang Yongzhen, Email:yzhuang@semi.ac.cn

PDF

Abstract: Mode characteristics of metallically confined microcircular resonators are theoretically studied by solving eigenvalue equations for two-dimensional multilayer structures. The influences of conventional metals including Au, Ag, Cu, Al, and Ti, on the mode wavelengths and Q factors of whispering gallery modes (WGMs) are analyzed and compared. The results show silver has the best optical confinement among these metals, and aluminum presents similar behavior to Au. However, Ti, which is usually applied to enhance the adhesion of p-electrode to semiconductors, results in a great dissipation for confined modes. Furthermore, circular microlasers with Al as both p-electrode and optical confinement medium are fabricated, and continuous-wave operations are realized at room temperature for the microlasers with a radius of 15 μm.

Key words: resonatorswhispering gallery modesmode Q factormetallic dissipationmicrolasers



[1]
Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1: 589 doi: 10.1038/nphoton.2007.171
[2]
Ding K, Liu Z C, Yin L J, et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys Rev B, 2012, 85: 041301(R) https://www.researchgate.net/publication/235537357_Room-temperature_continuous_wave_lasing_in_deep-subwavelength_metallic_cavities_under_electrical_injection
[3]
Chuang S L, Bimberg D. Metal-cavity nanolasers. IEEE Photon J, 2011, 3: 288 doi: 10.1109/JPHOT.2011.2138690
[4]
Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photonics, 2010, 4: 395 doi: 10.1038/nphoton.2010.88
[5]
Ma R M, Oulton R F, Sorge V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Material, 2011, 10: 110 doi: 10.1038/nmat2919
[6]
Hill M T, Marell M, Leong E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt Express, 2009, 17: 11107 doi: 10.1364/OE.17.011107
[7]
Kwon S H, Kang J H, Seassal C, et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett, 2010, 10: 3679 doi: 10.1021/nl1021706
[8]
Ning C Z. Semiconductor nanolasers. Phys Status Solidi B, 2010, 247: 774 http://cn.bing.com/academic/profile?id=2023361355&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Huang J, Kim S H, Scherer A. Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum. Opt Express, 2010, 18: 19581 doi: 10.1364/OE.18.019581
[10]
Lu C Y, Chuang S L. A surface emitting 3D metal-nanocavity laser: proposal and theory. Opt Express, 2011, 19: 13225 doi: 10.1364/OE.19.013225
[11]
Krishnamurthy V, Klein B. Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers. IEEE J Quantum Electron, 2008, 40(1): 67 https://www.researchgate.net/publication/2975124_Theoretical_Investigation_of_Metal_Cladding_for_Nanowire_and_Cylindrical_Micropost_Lasers
[12]
Mizrahi A, Lomakin V, Slutsky B A, et al. Low threshold gain metal coated laser nanoresonators. Opt Lett, 2008, 33: 1261 doi: 10.1364/OL.33.001261
[13]
Yang Y D, Huang Y Z, Wang S J. Mode analysis for equilateral-triangle-resonator microlasers with metal confinement layers. IEEE J Quantum Electron, 2009, 45: 1529 doi: 10.1109/JQE.2009.2024006
[14]
Che K J, Yang Y D, Huang Y Z. Mode characteristics for square resonators with a metal confinement layer. IEEE J Quantum Electron, 2010, 46: 414 doi: 10.1109/JQE.2009.2031616
[15]
Yao Q F, Huang Y Z, Zou L X, et al. Analysis of mode coupling and threshold gain control for nanocircular resonators confined by isolation and metallic layers. IEEE J Lightw Technol, 2013, 31(5): 786 doi: 10.1109/JLT.2012.2234437
[16]
Palik E D. Handbook of optical constants of solid. 1st ed. Boston: Academic Press, 1985
[17]
Vial A, Grimault A S, Macias D, et al. Application to the modeling of improved analytical fit of gold dispersion: extinction spectra with a finite-difference time-domain method. Phys Rev B, 2005, 71: 085416 doi: 10.1103/PhysRevB.71.085416
[18]
Wang S J, Lin J D, Huang Y Z, et al. AlGaInAs-InP microcylinder lasers connected with an output waveguide. IEEE Photon Technol Lett, 2010, 22: 1349 doi: 10.1109/LPT.2010.2056361
[19]
Lin J D, Zou L X, Huang Y Z, et al. Wide angle emission and single mode deformed circular microlasers with a flat side. Appl Opt, 2012, 51: 3930 doi: 10.1364/AO.51.003930
[20]
Jiao Wenlong, Yuan Weizheng, Chang Honglong. System level simulation of a micro resonant accelerometer with geometric nonlinear beams. Journal of Semiconductors, 2015, 36(10): 104007 doi: 10.1088/1674-4926/36/10/104007
[21]
Zhang Fanfan, Zhou Ping, Chen Qiaoshan, et al. An electro-optic directed decoder based on two cascaded microring resonators. Journal of Semiconductors, 2014, 35(10): 104011 doi: 10.1088/1674-4926/35/10/104011
Fig. 1.  (Color online) The schematic of a five-layer structure microcircular resonator.

Fig. 2.  (Color online) (a) Wavelengths and (b) Q factors of SPPs4, 1 mode, SPPs3, 1 mode, and TE2, 1 (TE2, 2 mode as functions of the thickness of gold layer at R1=400 nm. The mode field Hz patterns are presented for TE2, 1 mode (c) without metallic layer, and for TE2, 2 mode (d), SPPs3, 1 mode (e) and SPPs4, 1 mode (f) at the metallic thickness of 100 nm, respectively.

Fig. 3.  Mode quality factors of TE2, 1 (TE2, 2) mode versus the thickness of Ag, Au, Al, and Cu layers at R1=400 nm.

Fig. 4.  (Color online) Wavelengths (a) and Q factors (b) of TE2, 2 mode as functions of the isolation thickness in a nanocavity confined by the isolation layer and Ag, Au, Al and Cu layer, respectively, with the metallic layer thickness of 100 nm and R1=400 nm. The magnetic field Hz patterns are plotted at the isolation layer thickness of (c) 0, (d) 100, and (e) 500 nm, for the nanocavity confined by Ag.

Fig. 5.  (Color online) Wavelengths (a) and Q factors (b) of TE4, 1 mode as functions of the isolation layer thickness in a nanocavity with the radius of R1=400 nm confined by the isolation layer and 100 nm-thickness of Ag, Au, Al, and Cu layers, respectively. The magnetic field Hz patterns are plotted at the isolation layer thickness of (c) 0, (d) 150, and (e) 300 nm for the nanocavity confined by the isolation and Ag layers.

Fig. 6.  Mode wavelengths (a) and quality factors (b) for TE7, 2 and TE9, 1 modes versus the thickness of isolation layer in a microresonator with R1=1 μm and the gold thickness of 100 nm.

Fig. 7.  (Color online) Mode field patterns of Hz for TE9, 1 mode at the isolation layer thickness of (a) 0, (b) 100, and (c) 500 nm, and for TE7, 2 mode at the isolation layer thickness of (d) 0, (e) 100, and (f) 500 nm, in the microresonator with R1=1 μm and gold layer thickness of 100 nm.

Fig. 8.  (Color online) Q factors of TE9, 1 mode versus the thickness of the isolation layer for the microresonator with R1=1 μm confined by the isolation layer and Ag, Au, Al, and Cu layer, respectively, with a thickness of 100 nm.

Fig. 9.  (a) Wavelength and Q factor versus the thickness of Ti for TE9, 1 mode in a microcircular resonator with R1=1 μm confined by 400 nm isolation layer and 100 nm gold layer, and (b) mode wavelength and Q factor versus the thickness of isolation layer in the microresonator with the Ti/Au layer thickness of 50/100 nm.

Fig. 10.  Q factors of TEv, 1 with mode wavelength around 1.55 μm versus the radius of circular with isolation layer thickness of 500 nm and Ti/Au thickness.

Fig. 11.  (a) The applied voltage and output power versus continuous-wave injection current at room temperature for the Al confined circular resonator microlasers with the radius of 15 μm, and inset is the top-down view microscopic picture of a fabricated laser. (b) Lasing spectra of the microlaser at the injection currents of 30 mA, respectively, and inset is spectra at the threshold current of 18 mA.

Table 1.   Parameters for metal materials.

[1]
Hill M T, Oei Y S, Smalbrugge B, et al. Lasing in metallic-coated nanocavities. Nature Photonics, 2007, 1: 589 doi: 10.1038/nphoton.2007.171
[2]
Ding K, Liu Z C, Yin L J, et al. Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection. Phys Rev B, 2012, 85: 041301(R) https://www.researchgate.net/publication/235537357_Room-temperature_continuous_wave_lasing_in_deep-subwavelength_metallic_cavities_under_electrical_injection
[3]
Chuang S L, Bimberg D. Metal-cavity nanolasers. IEEE Photon J, 2011, 3: 288 doi: 10.1109/JPHOT.2011.2138690
[4]
Nezhad M P, Simic A, Bondarenko O, et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photonics, 2010, 4: 395 doi: 10.1038/nphoton.2010.88
[5]
Ma R M, Oulton R F, Sorge V J, et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Material, 2011, 10: 110 doi: 10.1038/nmat2919
[6]
Hill M T, Marell M, Leong E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt Express, 2009, 17: 11107 doi: 10.1364/OE.17.011107
[7]
Kwon S H, Kang J H, Seassal C, et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett, 2010, 10: 3679 doi: 10.1021/nl1021706
[8]
Ning C Z. Semiconductor nanolasers. Phys Status Solidi B, 2010, 247: 774 http://cn.bing.com/academic/profile?id=2023361355&encoded=0&v=paper_preview&mkt=zh-cn
[9]
Huang J, Kim S H, Scherer A. Design of a surface-emitting, subwavelength metal-clad disk laser in the visible spectrum. Opt Express, 2010, 18: 19581 doi: 10.1364/OE.18.019581
[10]
Lu C Y, Chuang S L. A surface emitting 3D metal-nanocavity laser: proposal and theory. Opt Express, 2011, 19: 13225 doi: 10.1364/OE.19.013225
[11]
Krishnamurthy V, Klein B. Theoretical investigation of metal cladding for nanowire and cylindrical micropost lasers. IEEE J Quantum Electron, 2008, 40(1): 67 https://www.researchgate.net/publication/2975124_Theoretical_Investigation_of_Metal_Cladding_for_Nanowire_and_Cylindrical_Micropost_Lasers
[12]
Mizrahi A, Lomakin V, Slutsky B A, et al. Low threshold gain metal coated laser nanoresonators. Opt Lett, 2008, 33: 1261 doi: 10.1364/OL.33.001261
[13]
Yang Y D, Huang Y Z, Wang S J. Mode analysis for equilateral-triangle-resonator microlasers with metal confinement layers. IEEE J Quantum Electron, 2009, 45: 1529 doi: 10.1109/JQE.2009.2024006
[14]
Che K J, Yang Y D, Huang Y Z. Mode characteristics for square resonators with a metal confinement layer. IEEE J Quantum Electron, 2010, 46: 414 doi: 10.1109/JQE.2009.2031616
[15]
Yao Q F, Huang Y Z, Zou L X, et al. Analysis of mode coupling and threshold gain control for nanocircular resonators confined by isolation and metallic layers. IEEE J Lightw Technol, 2013, 31(5): 786 doi: 10.1109/JLT.2012.2234437
[16]
Palik E D. Handbook of optical constants of solid. 1st ed. Boston: Academic Press, 1985
[17]
Vial A, Grimault A S, Macias D, et al. Application to the modeling of improved analytical fit of gold dispersion: extinction spectra with a finite-difference time-domain method. Phys Rev B, 2005, 71: 085416 doi: 10.1103/PhysRevB.71.085416
[18]
Wang S J, Lin J D, Huang Y Z, et al. AlGaInAs-InP microcylinder lasers connected with an output waveguide. IEEE Photon Technol Lett, 2010, 22: 1349 doi: 10.1109/LPT.2010.2056361
[19]
Lin J D, Zou L X, Huang Y Z, et al. Wide angle emission and single mode deformed circular microlasers with a flat side. Appl Opt, 2012, 51: 3930 doi: 10.1364/AO.51.003930
[20]
Jiao Wenlong, Yuan Weizheng, Chang Honglong. System level simulation of a micro resonant accelerometer with geometric nonlinear beams. Journal of Semiconductors, 2015, 36(10): 104007 doi: 10.1088/1674-4926/36/10/104007
[21]
Zhang Fanfan, Zhou Ping, Chen Qiaoshan, et al. An electro-optic directed decoder based on two cascaded microring resonators. Journal of Semiconductors, 2014, 35(10): 104011 doi: 10.1088/1674-4926/35/10/104011
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2276 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 28 April 2016 Revised: 20 June 2016 Online: Published: 01 December 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qifeng Yao, Yongzhen Huang, Yuede Yang, Jinlong Xiao. Analysis of mode characteristics for microcircular resonators confined by different metallic materials[J]. Journal of Semiconductors, 2016, 37(12): 124004. doi: 10.1088/1674-4926/37/12/124004 Q F Yao, Y Z Huang, Y D Yang, J L Xiao. Analysis of mode characteristics for microcircular resonators confined by different metallic materials[J]. J. Semicond., 2016, 37(12): 124004. doi: 10.1088/1674-4926/37/12/124004.Export: BibTex EndNote
      Citation:
      Qifeng Yao, Yongzhen Huang, Yuede Yang, Jinlong Xiao. Analysis of mode characteristics for microcircular resonators confined by different metallic materials[J]. Journal of Semiconductors, 2016, 37(12): 124004. doi: 10.1088/1674-4926/37/12/124004

      Q F Yao, Y Z Huang, Y D Yang, J L Xiao. Analysis of mode characteristics for microcircular resonators confined by different metallic materials[J]. J. Semicond., 2016, 37(12): 124004. doi: 10.1088/1674-4926/37/12/124004.
      Export: BibTex EndNote

      Analysis of mode characteristics for microcircular resonators confined by different metallic materials

      doi: 10.1088/1674-4926/37/12/124004
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61376048, 61106048)

      Project supported by the National Natural Science Foundation of China 61106048

      Project supported by the National Natural Science Foundation of China 61376048

      More Information
      • Corresponding author: Huang Yongzhen, Email:yzhuang@semi.ac.cn
      • Received Date: 2016-04-28
      • Revised Date: 2016-06-20
      • Published Date: 2016-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return