Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells

Hongyu Zhen1, 2, , Kan Li1, 3, Yaokang Zhang1, Lina Chen1, Liyong Niu1, Xiaoling Wei1, Xu Fang4, Peng You5, Zhike Liu5, Dongrui Wang1, Feng Yan5 and Zijian Zheng1,

+ Author Affiliations

 Corresponding author: Hongyu Zhen, E-mail: rainy_ch@126.com (Hongyu Zhen); Zijian Zheng, zijian.zheng@polyu.edu.hk (Zijian Zheng)

PDF

Turn off MathJax

Abstract: Printing of metal bottom back electrodes of flexible organic solar cells (FOSCs) at low temperature is of great significance to realize the full-solution fabrication technology. However, this has been difficult to achieve because often the interfacial properties of those printed electrodes, including conductivity, roughness, work function, optical and mechanical flexibility, cannot meet the device requirement at the same time. In this work, we fabricate printed Ag and Cu bottom back cathodes by a low-temperature solution technique named polymer-assisted metal deposition (PAMD) on flexible PET substrates. Branched polyethylenimine (PEI) and ZnO thin films are used as the interface modification layers (IMLs) of these cathodes. Detailed experimental studies on the electrical, mechanical, and morphological properties, and simulation study on the optical properties of these IMLs are carried out to understand and optimize the interface of printed cathodes. We demonstrate that the highest power conversion efficiency over 3.0% can be achieved from a full-solution processed OFSC with the device structure being PAMD-Ag/PEI/P3HT:PC61BM/PH1000. This device also acquires remarkable stability upon repeating bending tests.

Key words: polymer-assisted metal depositionfull-solution processedflexible organic solar cellsprinted electrodesinterface modification layers



[1]
Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9: 859 doi: 10.1038/nmat2834
[2]
Takei K, Takahashi T, Ho J C, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater, 2010, 9: 821 doi: 10.1038/nmat2835
[3]
Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
[4]
Xiao F, Li Y, Zan X, et al. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv Funct Mater, 2012, 22: 2487 doi: 10.1002/adfm.201200191
[5]
Kwak Y H, Choi D S, Kim Y N, et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosensors Bioelectron, 2012, 37: 82 doi: 10.1016/j.bios.2012.04.042
[6]
Shin D Y, Jung M, Chun S. Resistivity transition mechanism of silver salts in the next generation conductive ink for a roll-to-roll printed film with a silver network. J Mater Chem A, 2012, 22: 11755 doi: 10.1039/c2jm30198a
[7]
Zhang J, Li Y, Zhang B, et al. Flexible indium–gallium– zinc–oxide Schottky diode operating beyond 2.45 GHz. Nat Commun, 2015, 6: 1
[8]
Kaltenbrunner M, White M S, Głowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 770 doi: 10.1038/ncomms1772
[9]
Zbiri M, Haverkate L A, Kearley G J, et al. Organic solar cells. In: Neutron applications in materials for energy. Springer, 2015
[10]
Hoppe H, Sariciftci N S. Organic solar cells: an overview. J Mater Res, 2004, 19: 1924 doi: 10.1557/JMR.2004.0252
[11]
Lungenschmied C, Dennler G, Neugebauer H, et al. Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells, 2007, 91: 379 doi: 10.1016/j.solmat.2006.10.013
[12]
Kaltenbrunner M, White M S, Głowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 770 doi: 10.1038/ncomms1772
[13]
Zhen H, Li K, Huang Z, et al. Inverted indium-tin-oxide-free cone-shaped polymer solar cells for light trapping. Appl Phys Lett, 2012, 100: 213901 doi: 10.1063/1.4720176
[14]
Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347: 522 doi: 10.1126/science.aaa0472
[15]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234 doi: 10.1126/science.aaa9272
[16]
He Z, Xiao B, Liu F, et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics, 2015, 9: 174 doi: 10.1038/nphoton.2015.6
[17]
You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun, 2013, 4: 1446 doi: 10.1038/ncomms2411
[18]
Huang J, Li C Z, Chueh C C, et al. 10.4% Power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Adv Energy Mater, 2015, 5: 3599
[19]
Zhao W, Qian D, Zhang S, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater, 2016, 28: 4734 doi: 10.1002/adma.v28.23
[20]
Huang J, Carpenter J H, Li C Z, et al. Highly efficient organic solar cells with improved vertical donor–acceptor compositional gradient via an inverted off-center spinning method. Adv Mater, 2015, 28, 5: 967
[21]
Liao S H, Jhuo H J, Yeh P N, et al. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep, 2014, 4: 6813
[22]
Nian L, Zhang W, Zhu N, et al. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J Am Chem Soc, 2015, 137: 6995 doi: 10.1021/jacs.5b02168
[23]
Zhang S, Ye L, Hou J. Breaking the 10% efficiency barrier in organic photovoltaics: morphology and device optimization of well-known PBDTTT polymers. Adv Energy Mater, 2016, 6: 1502529 doi: 10.1002/aenm.201502529
[24]
Krebs, F. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron, 2009, 10: 761 doi: 10.1016/j.orgel.2009.03.009
[25]
Krantz J, Forberich K, Kubis P, et al. Printing high performance reflective electrodes for organic solar cells. Org Electron, 2015, 17: 334 doi: 10.1016/j.orgel.2014.12.016
[26]
Andersen T R, Dam H F, Hösel M, et al. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ Sci, 2014, 7: 2925 doi: 10.1039/C4EE01223B
[27]
Zhou Y, Fuentes-Hernandez C, Shim J, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336: 327 doi: 10.1126/science.1218829
[28]
Van Franeker J J, Voorthuijzen W P, Gorter H, et al. All-solution-processed organic solar cells with conventional architecture. Sol Energy Mater Sol, 2013, 117: 267 doi: 10.1016/j.solmat.2013.06.033
[29]
Guo F, Zhu X, Forberich K, et al. ITO-free and fully solution-processed semitransparent organic solar cells with high fill factors. Adv Energy Mater, 2013, 3: 1062 doi: 10.1002/aenm.v3.8
[30]
Guo F, Li N, Radmilović V V, et al. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ Sci, 2015, 8: 1690 doi: 10.1039/C5EE00184F
[31]
Cheng P, Lin Y, Zawacka N K, et al. Comparison of additive amount used in spin-coated and roll-coated organic solar cells. J Mater Chem A, 2014, 2: 19542 doi: 10.1039/C4TA04906C
[32]
Li K, Zhen H, Niu L, et al. Full-solution processed flexible organic solar cells using low-cost printable copper electrodes. Adv Mater, 2014, 26: 7271 doi: 10.1002/adma.v26.42
[33]
Yim J H, Joe S Y, Pang C, et al. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano, 2014, 8: 2857 doi: 10.1021/nn406672n
[34]
Carlé J E, Helgesen M, Zawacka N K, et al. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells. J Polym Sci B, 2014, 52: 893 doi: 10.1002/polb.v52.13
[35]
Helgesen M, Carlé J E, Krebs F C. Slot-die coating of a high performance copolymer in a readily scalable roll process for polymer solar cells. Adv Energy Mater, 2013, 3: 1664 doi: 10.1002/aenm.v3.12
[36]
Helgesen M, Carlé J E, dos Reis Benatto G A, et al. Making ends meet: flow synthesis as the answer to reproducible high-performance conjugated polymers on the scale that roll-to-roll processing demands. Adv Energy Mater, 2015, 5(9): 1401996
[37]
Nickel F, Haas T, Wegner E, et al. Mechanically robust, ITO-free, 4.8% efficient, all-solution processed organic solar cells on flexible PET foil. Sol Energy Mater Sol, 2014, 130: 317 doi: 10.1016/j.solmat.2014.07.005
[38]
Zhang Y K, Wu Z W, Li P, et al. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater, 2011, 23: 4371 doi: 10.1002/adma.201100871
[39]
Kang M G, Xu T, Park H J, et al. Full-solution-processed TCO-free semi-transparent perovskite solar cells for tandem and flexible applications. Adv Energy Mater, 2017: 1701569 doi: 10.1002/aenm.201701569
[40]
Yim J H, Joe S Y, Pang C, et al. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano, 2014, 8: 2857 doi: 10.1021/nn406672n
[41]
Wu H, Hu L, Rowell M W, Kong D, et al. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett, 2010, 10: 4242 doi: 10.1021/nl102725k
[42]
Chen H Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics, 2009, 3: 649 doi: 10.1038/nphoton.2009.192
[43]
He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591
[44]
Espinosa N, Lenzmann F O, Ryley S, et al. OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools. J Mater Chem A, 2013, 1: 7037 doi: 10.1039/c3ta01611k
[45]
Kyaw A K K, Wang D H, Gupta V, et al. Efficient solution-processed small-molecule solar cells with inverted structure. Adv Mater, 2013, 25: 2397 doi: 10.1002/adma.v25.17
[46]
Yu G, Gao J, Hummelen J C, et al. Polymer photovoltiac cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789 doi: 10.1126/science.270.5243.1789
[47]
Guo R, Yu Y, Xie Z, et al. Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors. Adv Mater, 2013, 25: 3343 doi: 10.1002/adma.v25.24
[48]
Liu X, Chang H, Li Y, et al. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl Mater Interfaces, 2010, 2: 529 doi: 10.1021/am900744n
[49]
Yu Y, Zeng J, Chen C, et al. Three-dimensional compressible and stretchable conductive composites. Adv Mater, 2014, 26: 810 doi: 10.1002/adma.201303662
[50]
Yu Y, Xiao X, Zhang Y, et al. Photoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronics. Adv Mater, 2016, 28: 4926 doi: 10.1002/adma.v28.24
[51]
Duan C, Zhong C, Huang F, et al. Interface engineering for high performance bulk-heterojunction polymeric solar cells. London: Springer, 2013: 43
[52]
Steim R, Kogler F R, Brabec C J. Interface materials for organic solar cells. J Mater Chem, 2010, 20: 2499 doi: 10.1039/b921624c
[53]
Chen L M, Xu Z, Hong Z, et al. Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J Mater Chem, 2010, 20: 2575 doi: 10.1039/b925382c
[54]
Po R, Carbonera C, Bernardi A, et al. The role of buffer layers in polymer solar cells. Energy Environ Sci, 2011, 4: 285 doi: 10.1039/C0EE00273A
[55]
Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed, 2002, 41: 1188 doi: 10.1002/(ISSN)1521-3773
[56]
Hsu C H, Yeh M C, Lo K L, et al. Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass. Langmuir, 2007, 23: 12111 doi: 10.1021/la7023988
[57]
Park H, Chang S, Zhou X, et al. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett, 2014, 14: 5148 doi: 10.1021/nl501981f
[58]
Wang Z Z, Zhang C F, Chen D Z, et al. Flexible ITO-free organic solar cells based on MoO3/Ag anodes. IEEE Photonics J, 2015, 7: 8400109
Fig. 1.  (Color online) Schematic illustration of the fabrication process of FOSCs based on PAMD metal electrodes.

Fig. 1.  UPS spectra of PAMD metals with/or IMLs.

Fig. 2.  (Color online) Optical simulations of total absorbed photons in device: (a) Ag(80 nm)/PEI(15 nm)/active layer(200 nm)/PH1000(120 nm), (b) Ag(80 nm)/ZnO(50 nm)/active layer(200 nm)/PH1000(120 nm), (c) Cu(80 nm)/PEI(15 nm)/active layer(200 nm)/PH1000(120 nm); and (d) Cu(80 nm)/ZnO(50 nm)/active layer(200 nm)/PH1000(120 nm).

Fig. 3.  (Color online) (a) J–V characteristics of FOSCs based PAMD-Ag under AM1.5. (b) Dark J–V characteristics of FOSCs based on PAMD-Ag under AM1.5. (c) Light and dark J–V characteristics of FOSCs based on PAMD-Cu. (c) EQE spectra of FOSCs based on PAMD metals.

Fig. 4.  (Color online) AFM images (1 × 1 μm2) of (a) PAMD Ag/PEI, (b) PAMD-Ag/CF-ZnO, (c) PAMD-Ag/ME-ZnO, (d) PAMD-Ag/CF-ZnO/PEI, (e) PAMD-Ag/ME-ZnO/PEI, (f) PAMD-Cu, (g) PAMD-Cu/PEI, (h) PAMD-Cu/ME-ZnO, (i) PAMD-Cu/ME-ZnO/PEI.

Fig. 5.  (Color online) Normalized photovoltaic parameters of the OSCs with different cathodes and IMLs during 500 cycles of bending test. (a) PAMD-Ag/PEI. (b) PAMD-Ag/ZnO. (c) PAMD-Cu/PEI. (d) PAMD-Cu/ZnO.

Table 1.   Photovoltaic parameters of the OSCs based on PAMD metal electrode.

Metal electrode ETL Jsc (mA/cm2) Voc (V) FF PCE (%) Rs (Ω·cm2) Rsh (Ω·cm2)
PAMD-Ag PEI 11.10 0.58 0.47 3.03 12 285
PAMD-Ag CF-ZnO 8.60 0.58 0.49 2.45 12 230
PAMD-Ag CF-ZnO/PEI 8.39 0.58 0.46 2.24 19 310
PAMD-Ag ME-ZnO 10.01 0.58 0.36 2.11 32 166
PAMD-Ag ME-ZnO/PEI 8.70 0.58 0.45 2.27 24 232
PAMD-Cu PEI 7.88 0.58 0.55 2.52 15 718
PAMD-Cu ME-ZnO 7.52 0.58 0.47 2.07 21 320
PAMD-Cu ME-ZnO/PEI 7.22 0.58 0.45 1.90 28 277
DownLoad: CSV
[1]
Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater, 2010, 9: 859 doi: 10.1038/nmat2834
[2]
Takei K, Takahashi T, Ho J C, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater, 2010, 9: 821 doi: 10.1038/nmat2835
[3]
Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun, 2013, 4: 1859 doi: 10.1038/ncomms2832
[4]
Xiao F, Li Y, Zan X, et al. Growth of metal–metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv Funct Mater, 2012, 22: 2487 doi: 10.1002/adfm.201200191
[5]
Kwak Y H, Choi D S, Kim Y N, et al. Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosensors Bioelectron, 2012, 37: 82 doi: 10.1016/j.bios.2012.04.042
[6]
Shin D Y, Jung M, Chun S. Resistivity transition mechanism of silver salts in the next generation conductive ink for a roll-to-roll printed film with a silver network. J Mater Chem A, 2012, 22: 11755 doi: 10.1039/c2jm30198a
[7]
Zhang J, Li Y, Zhang B, et al. Flexible indium–gallium– zinc–oxide Schottky diode operating beyond 2.45 GHz. Nat Commun, 2015, 6: 1
[8]
Kaltenbrunner M, White M S, Głowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 770 doi: 10.1038/ncomms1772
[9]
Zbiri M, Haverkate L A, Kearley G J, et al. Organic solar cells. In: Neutron applications in materials for energy. Springer, 2015
[10]
Hoppe H, Sariciftci N S. Organic solar cells: an overview. J Mater Res, 2004, 19: 1924 doi: 10.1557/JMR.2004.0252
[11]
Lungenschmied C, Dennler G, Neugebauer H, et al. Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells, 2007, 91: 379 doi: 10.1016/j.solmat.2006.10.013
[12]
Kaltenbrunner M, White M S, Głowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 770 doi: 10.1038/ncomms1772
[13]
Zhen H, Li K, Huang Z, et al. Inverted indium-tin-oxide-free cone-shaped polymer solar cells for light trapping. Appl Phys Lett, 2012, 100: 213901 doi: 10.1063/1.4720176
[14]
Nie W, Tsai H, Asadpour R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347: 522 doi: 10.1126/science.aaa0472
[15]
Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348: 1234 doi: 10.1126/science.aaa9272
[16]
He Z, Xiao B, Liu F, et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photonics, 2015, 9: 174 doi: 10.1038/nphoton.2015.6
[17]
You J, Dou L, Yoshimura K, et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun, 2013, 4: 1446 doi: 10.1038/ncomms2411
[18]
Huang J, Li C Z, Chueh C C, et al. 10.4% Power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Adv Energy Mater, 2015, 5: 3599
[19]
Zhao W, Qian D, Zhang S, et al. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater, 2016, 28: 4734 doi: 10.1002/adma.v28.23
[20]
Huang J, Carpenter J H, Li C Z, et al. Highly efficient organic solar cells with improved vertical donor–acceptor compositional gradient via an inverted off-center spinning method. Adv Mater, 2015, 28, 5: 967
[21]
Liao S H, Jhuo H J, Yeh P N, et al. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep, 2014, 4: 6813
[22]
Nian L, Zhang W, Zhu N, et al. Photoconductive cathode interlayer for highly efficient inverted polymer solar cells. J Am Chem Soc, 2015, 137: 6995 doi: 10.1021/jacs.5b02168
[23]
Zhang S, Ye L, Hou J. Breaking the 10% efficiency barrier in organic photovoltaics: morphology and device optimization of well-known PBDTTT polymers. Adv Energy Mater, 2016, 6: 1502529 doi: 10.1002/aenm.201502529
[24]
Krebs, F. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org Electron, 2009, 10: 761 doi: 10.1016/j.orgel.2009.03.009
[25]
Krantz J, Forberich K, Kubis P, et al. Printing high performance reflective electrodes for organic solar cells. Org Electron, 2015, 17: 334 doi: 10.1016/j.orgel.2014.12.016
[26]
Andersen T R, Dam H F, Hösel M, et al. Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules. Energy Environ Sci, 2014, 7: 2925 doi: 10.1039/C4EE01223B
[27]
Zhou Y, Fuentes-Hernandez C, Shim J, et al. A universal method to produce low-work function electrodes for organic electronics. Science, 2012, 336: 327 doi: 10.1126/science.1218829
[28]
Van Franeker J J, Voorthuijzen W P, Gorter H, et al. All-solution-processed organic solar cells with conventional architecture. Sol Energy Mater Sol, 2013, 117: 267 doi: 10.1016/j.solmat.2013.06.033
[29]
Guo F, Zhu X, Forberich K, et al. ITO-free and fully solution-processed semitransparent organic solar cells with high fill factors. Adv Energy Mater, 2013, 3: 1062 doi: 10.1002/aenm.v3.8
[30]
Guo F, Li N, Radmilović V V, et al. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ Sci, 2015, 8: 1690 doi: 10.1039/C5EE00184F
[31]
Cheng P, Lin Y, Zawacka N K, et al. Comparison of additive amount used in spin-coated and roll-coated organic solar cells. J Mater Chem A, 2014, 2: 19542 doi: 10.1039/C4TA04906C
[32]
Li K, Zhen H, Niu L, et al. Full-solution processed flexible organic solar cells using low-cost printable copper electrodes. Adv Mater, 2014, 26: 7271 doi: 10.1002/adma.v26.42
[33]
Yim J H, Joe S Y, Pang C, et al. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano, 2014, 8: 2857 doi: 10.1021/nn406672n
[34]
Carlé J E, Helgesen M, Zawacka N K, et al. A comparative study of fluorine substituents for enhanced stability of flexible and ITO-free high-performance polymer solar cells. J Polym Sci B, 2014, 52: 893 doi: 10.1002/polb.v52.13
[35]
Helgesen M, Carlé J E, Krebs F C. Slot-die coating of a high performance copolymer in a readily scalable roll process for polymer solar cells. Adv Energy Mater, 2013, 3: 1664 doi: 10.1002/aenm.v3.12
[36]
Helgesen M, Carlé J E, dos Reis Benatto G A, et al. Making ends meet: flow synthesis as the answer to reproducible high-performance conjugated polymers on the scale that roll-to-roll processing demands. Adv Energy Mater, 2015, 5(9): 1401996
[37]
Nickel F, Haas T, Wegner E, et al. Mechanically robust, ITO-free, 4.8% efficient, all-solution processed organic solar cells on flexible PET foil. Sol Energy Mater Sol, 2014, 130: 317 doi: 10.1016/j.solmat.2014.07.005
[38]
Zhang Y K, Wu Z W, Li P, et al. Efficient organic solar cells with solution-processed silver nanowire electrodes. Adv Mater, 2011, 23: 4371 doi: 10.1002/adma.201100871
[39]
Kang M G, Xu T, Park H J, et al. Full-solution-processed TCO-free semi-transparent perovskite solar cells for tandem and flexible applications. Adv Energy Mater, 2017: 1701569 doi: 10.1002/aenm.201701569
[40]
Yim J H, Joe S Y, Pang C, et al. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano, 2014, 8: 2857 doi: 10.1021/nn406672n
[41]
Wu H, Hu L, Rowell M W, Kong D, et al. Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett, 2010, 10: 4242 doi: 10.1021/nl102725k
[42]
Chen H Y, Hou J, Zhang S, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics, 2009, 3: 649 doi: 10.1038/nphoton.2009.192
[43]
He Z, Zhong C, Su S, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics, 2012, 6: 591
[44]
Espinosa N, Lenzmann F O, Ryley S, et al. OPV for mobile applications: an evaluation of roll-to-roll processed indium and silver free polymer solar cells through analysis of life cycle, cost and layer quality using inline optical and functional inspection tools. J Mater Chem A, 2013, 1: 7037 doi: 10.1039/c3ta01611k
[45]
Kyaw A K K, Wang D H, Gupta V, et al. Efficient solution-processed small-molecule solar cells with inverted structure. Adv Mater, 2013, 25: 2397 doi: 10.1002/adma.v25.17
[46]
Yu G, Gao J, Hummelen J C, et al. Polymer photovoltiac cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270: 1789 doi: 10.1126/science.270.5243.1789
[47]
Guo R, Yu Y, Xie Z, et al. Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors. Adv Mater, 2013, 25: 3343 doi: 10.1002/adma.v25.24
[48]
Liu X, Chang H, Li Y, et al. Polyelectrolyte-bridged metal/cotton hierarchical structures for highly durable conductive yarns. ACS Appl Mater Interfaces, 2010, 2: 529 doi: 10.1021/am900744n
[49]
Yu Y, Zeng J, Chen C, et al. Three-dimensional compressible and stretchable conductive composites. Adv Mater, 2014, 26: 810 doi: 10.1002/adma.201303662
[50]
Yu Y, Xiao X, Zhang Y, et al. Photoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronics. Adv Mater, 2016, 28: 4926 doi: 10.1002/adma.v28.24
[51]
Duan C, Zhong C, Huang F, et al. Interface engineering for high performance bulk-heterojunction polymeric solar cells. London: Springer, 2013: 43
[52]
Steim R, Kogler F R, Brabec C J. Interface materials for organic solar cells. J Mater Chem, 2010, 20: 2499 doi: 10.1039/b921624c
[53]
Chen L M, Xu Z, Hong Z, et al. Interface investigation and engineering–achieving high performance polymer photovoltaic devices. J Mater Chem, 2010, 20: 2575 doi: 10.1039/b925382c
[54]
Po R, Carbonera C, Bernardi A, et al. The role of buffer layers in polymer solar cells. Energy Environ Sci, 2011, 4: 285 doi: 10.1039/C0EE00273A
[55]
Pacholski C, Kornowski A, Weller H. Self-assembly of ZnO: from nanodots to nanorods. Angew Chem Int Ed, 2002, 41: 1188 doi: 10.1002/(ISSN)1521-3773
[56]
Hsu C H, Yeh M C, Lo K L, et al. Application of microcontact printing to electroless plating for the fabrication of microscale silver patterns on glass. Langmuir, 2007, 23: 12111 doi: 10.1021/la7023988
[57]
Park H, Chang S, Zhou X, et al. Flexible graphene electrode-based organic photovoltaics with record-high efficiency. Nano Lett, 2014, 14: 5148 doi: 10.1021/nl501981f
[58]
Wang Z Z, Zhang C F, Chen D Z, et al. Flexible ITO-free organic solar cells based on MoO3/Ag anodes. IEEE Photonics J, 2015, 7: 8400109

17060014supp.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5006 Times PDF downloads: 59 Times Cited by: 0 Times

    History

    Received: 22 June 2017 Revised: 05 October 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongyu Zhen, Kan Li, Yaokang Zhang, Lina Chen, Liyong Niu, Xiaoling Wei, Xu Fang, Peng You, Zhike Liu, Dongrui Wang, Feng Yan, Zijian Zheng. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells[J]. Journal of Semiconductors, 2018, 39(1): 014002. doi: 10.1088/1674-4926/39/1/014002 H Y Zhen, K Li, Y K Zhang, L N Chen, L Y Niu, X L Wei, X Fang, P You, Z K Liu, D R Wang, F Yan, Z J Zheng, Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells[J]. J. Semicond., 2018, 39(1): 014002. doi: 10.1088/1674-4926/39/1/014002.Export: BibTex EndNote
      Citation:
      Hongyu Zhen, Kan Li, Yaokang Zhang, Lina Chen, Liyong Niu, Xiaoling Wei, Xu Fang, Peng You, Zhike Liu, Dongrui Wang, Feng Yan, Zijian Zheng. Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells[J]. Journal of Semiconductors, 2018, 39(1): 014002. doi: 10.1088/1674-4926/39/1/014002

      H Y Zhen, K Li, Y K Zhang, L N Chen, L Y Niu, X L Wei, X Fang, P You, Z K Liu, D R Wang, F Yan, Z J Zheng, Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells[J]. J. Semicond., 2018, 39(1): 014002. doi: 10.1088/1674-4926/39/1/014002.
      Export: BibTex EndNote

      Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells

      doi: 10.1088/1674-4926/39/1/014002
      Funds:

      Project supported by the Research Grant Council of Hong Kong (No. PolyUC5015-15G), the Hong Kong Polytechnic University (No. G-SB06), and the National Natural Science Foundation of China (Nos. 21125316, 21434009, 51573026).

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return