REVIEWS

Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs

Yanhong Liu1, Fenghua Li1, Hui Huang2, Baodong Mao1, , Yang Liu2, and Zhenhui Kang2,

+ Author Affiliations

 Corresponding author: Baodong Mao, maobd@ujs.edu.cn (BD Mao); Yang Liu, yangl@suda.edu.cn (Y Liu); Zhenhui Kang, Email: zhkang@suda.edu.cn (ZH Kang)

PDF

Turn off MathJax

Abstract: Due to the quantum size effect and other unique photoelectric properties, quantum dots (QDs) have attracted tremendous interest in nanoscience, leading a lot of milestone works. Meantime, the scope and scientific connotation of QDs are constantly expanding, which demonstrated amazing development vitality. Besides the well-developed Cd-containing II–VI semiconductors, QDs of environmentally friendly I–III–VI (I = Cu, Ag; III = Ga, In; VI = S, Se) chalcogenides have been a hot spot in the QDs family, which are different from traditional II–VI QDs in terms of multi-composition, complex defect structure, synthetic chemistry and optical properties, bringing a series of new laws, new phenomena and new challenges. The composition of I–III–VI chalcogenides and their solid solutions can be adjusted within a very large range while the anion framework remains stable, giving them excellent capability of photoelectric property manipulation. The important features of I–III–VI QDs include wide-range bandgap tuning, large Stokes shift and long photoluminescence (PL) lifetime, which are crucial for biological, optoelectronic and energy applications. This is due to the coexistence of two or more metal cations leading to a large number of intrinsic defects within the crystal lattice also known as deep-donor-acceptor states, besides the commonly observed surface defects in all QDs. However, a profound understanding of their structure and optoelectronic properties remains a huge challenge with many key issues unclear. On one hand, the achievements and experience of traditional QD research are expected to provide vital value for further development of I–III–VI QDs. On the other hand, the understanding of the emerging new QDs, such as carbon and other 2D materials, are even more challenging because of the dramatically different composition and structure from II–VI semiconductors. For this, I–III–VI QDs, as a close relative to II–VI QDs but with much more complex composition and structure variation, provide a great opportunity as a gradual bridge to make up the big gap between traditional QDs and emerging new QDs, such as carbon dots. Here, we hope to compare the research progress of I–III–VI QDs and II–VI QDs, in an effort to comprehensively understand their structure, synthetic chemistry, optical electronic and photocatalytic properties. We further give insights on the key potential issues of I–III–VI QDs from the perspective of bridging between traditional QDs and emerging carbon dots, especially the profound principles behind synthetic chemistry, PL mechanism and optoelectronic applications.

Key words: I–III–VIII–VIquantum dotscarbon dotsoptical propertiesphotocatalysis



[1]
Li S Q, Tang X S, Zang Z G, et al. I–III–VI chalcogenide semiconductor nanocrystals: Synthesis, properties, and applications. Chin J Catal, 2018, 39(4), 590 doi: 10.1016/S1872-2067(18)63052-9
[2]
Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 2005, 437(7063), 1334 doi: 10.1038/nature04204
[3]
Tae E L, Lee K E, Jeong J S, et al. Synthesis of diamond-shape titanate molecular sheets with different sizes and realization of quantum confinement effect during dimensionality reduction from two to zero. J Am Chem Soc, 2008, 130(20), 6534 doi: 10.1021/ja711467g
[4]
Cao Y, Guo J, Shi R, et al. Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. Nat Commun, 2018, 9(1), 2379 doi: 10.1038/s41467-018-04837-x
[5]
Ma H T, Pan L J, Wang J, et al. Synthesis of AgInS2 QDs in droplet microreactors: Online fluorescence regulating through temperature control. Chin Chem Lett, 2019, 30(1), 79 doi: 10.1016/j.cclet.2018.04.033
[6]
Stroyuk O, Raevskaya A, Spranger F, et al. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag –In –S quantum dots. J Phys Chem C, 2018, 122(25), 13648 doi: 10.1021/acs.jpcc.8b00106
[7]
Oluwafemi O S, May B M M, Parani S, et al. Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Mat Sci Eng C, 2020, 106, 110181 doi: 10.1016/j.msec.2019.110181
[8]
Zhu X S, Demillo V G, Chen S Q, et al. Development of non-cadmium I–III–VI quantum dots and their surface modification for biomedical applications. Mater Sci Forum, 2018, 915, 163 doi: 10.4028/www.scientific.net/MSF.915.163
[9]
Kalinowska D, Drozd M, Grabowska-Jadach I, et al. The influence of selected omega-mercaptocarboxylate ligands on physicochemical properties and biological activity of Cd-free, zinccopperindium sulfide colloidal nanocrystals. Mater Sci Eng C, 2019, 97, 583 doi: 10.1016/j.msec.2018.12.043
[10]
Chen B, Pradhan N, Zhong H. From large-scale synthesis to lighting device applications of ternary I–III–VI semiconductor nanocrystals: Inspiring greener material emitters. J Phys Chem Lett, 2018, 9(2), 435 doi: 10.1021/acs.jpclett.7b03037
[11]
Yoon S Y, Kim J H, Kim K H, et al. High-efficiency blue and white electroluminescent devices based on non-Cd I−III−VI quantum dots. Nano Energy, 2019, 63, 103869 doi: 10.1016/j.nanoen.2019.103869
[12]
Rui W, Xin T, Channa A I, et al. Environment-friendly Mn-alloyed core/shell quantum dots for high-efficiency photoelectrochemical cells. J Mater Chem A, 2020, 8(21), 10736 doi: 10.1039/D0TA00953A
[13]
Jalalah M, Al-Assiri M S, Park J G. One-pot gram-scale, eco-friendly, and cost-effective synthesis of CuGaS2/ZnS nanocrystals as efficient UV-harvesting down-converter for photovoltaics. Adv Energy Mater, 2018, 8(20), 1703418 doi: 10.1002/aenm.201703418
[14]
Yarema O, Yarema M, Wood V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I–III–VI materials. Chem Mater, 2018, 30(5), 1446 doi: 10.1021/acs.chemmater.7b04710
[15]
Tan L L, Liu Y H, Mao B D, et al. Effective bandgap narrowing of Cu–In–Zn–S quantum dots for photocatalytic H2 production via cocatalyst-alleviated charge recombination. Inorg Chem Front, 2018, 5(1), 258 doi: 10.1039/C7QI00607A
[16]
Feng J, Yang X S, Feng G W, et al. The experimental determination of composition-dependent molar extinction coefficient of nonstoichiometric Zn–Cu–In–S nanocrystals. Mater Res Express, 2018, 5(7), 075030 doi: 10.1088/2053-1591/aad14d
[17]
Nong J P, Lan G L, Jin W F, et al. Eco-friendly and high-performance photoelectrochemical anode based on AgInS2 quantum dots embedded in 3D graphene nanowalls. J Mater Chem C, 2019, 7(32), 9830 doi: 10.1039/C9TC01395D
[18]
Stanbery B J. Copper indium selenides and related materials for photovoltaic devices. Crit Rev Solid State, 2002, 27(2), 73 doi: 10.1080/20014091104215
[19]
Feurer T, Reinhard P, Avancini E, et al. Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications. Prog Photovolt, 2017, 25(7), 645 doi: 10.1002/pip.2811
[20]
Kameyama T, Kishi M, Miyamae C, et al. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag –In –S nanoparticles via Ga3+ Doping. ACS Appl Mater Inter, 2018, 10(49), 42844 doi: 10.1021/acsami.8b15222
[21]
Huang D, Jiang J W, Guo J, et al. General rules of the sub-band gaps in group-IV (Si, Ge, and Sn)-doped I–III–VI2-type chalcopyrite compounds for intermediate band solar cell: A first-principles study. Mater Sci Eng B, 2018, 236–237, 147 doi: 10.1016/j.mseb.2018.11.006
[22]
Chen M M, Xue H G, Guo S P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coordin Chem Rev, 2018, 368(1), 115 doi: 10.1016/j.ccr.2018.04.014
[23]
Liu Y H, Huang H, Cao W J, et al. Advances in carbon dots: from the perspective of traditional quantum dots. Mater Chem Front, 2020, 4(6), 1586 doi: 10.1039/D0QM00090F
[24]
Girma W M, Fahmi M Z, Permadi A, et al. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B, 2017, 5(31), 6193 doi: 10.1039/C7TB01156C
[25]
Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternary I–III–VI2 semiconductor nanocrystals. J Appl Phys, 2009, 105(7), 073106 doi: 10.1063/1.3103768
[26]
Aldakov D, Lefrancois A, Reiss P. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C, 2013, 1(24), 3756 doi: 10.1039/c3tc30273c
[27]
Wei S H, Ferreira L G, Zunger A. First-principles calculation of the order-disorder transition in chalcopyrite semiconductors. Phys Rev B, 1992, 45(5), 2533 doi: 10.1103/PhysRevB.45.2533
[28]
Sandroni M, Wegner K D, Aldakov D, et al. Prospects of chalcopyrite-type nanocrystals for energy applications. Acs Energy Lett, 2017, 2(5), 1076 doi: 10.1021/acsenergylett.7b00003
[29]
Nakamura H, Kato W, Uehara M, et al. Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chem Mater, 2006, 18(14), 3330 doi: 10.1021/cm0518022
[30]
Whitham P J, Marchioro A, Knowles K E, et al. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J Phys Chem C, 2016, 120(30), 17136 doi: 10.1021/acs.jpcc.6b06425
[31]
Takarabe K, Kawai K, Minomura S, et al. Electronic structure of some I–III–VI2 chalcopyrite semiconductors studied by synchrotron radiation. J Appl Phys, 1992, 71(1), 441 doi: 10.1063/1.350675
[32]
Zhang L L, Pan Z X, Wang W, et al. Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J Mater Chem A, 2017, 5(40), 21442 doi: 10.1039/C7TA06904A
[33]
Bouich A, Hartiti B, Ullah S, et al. Experimental, theoretical, and numerical simulation of the performance of CuInxGa(1– x)S2-based solar cells. Optik, 2019, 183, 137 doi: 10.1016/j.ijleo.2019.02.067
[34]
Pradeepkumar M S, Pal A S, Singh A, et al. Phase separation in wurtzite CuInxGa1− xS2 nanoparticles. J Mater Sci, 2020, 55(26), 11841 doi: 10.1007/s10853-020-04844-8
[35]
Ilaiyaraja P, Mocherla P S, Srinivasan T K, et al. Synthesis of Cu-deficient and Zn-graded Cu–In–Zn–S quantum dots and hybrid inorganic-organic nanophosphor composite for white light emission. ACS Appl Mater Interfaces, 2016, 8(19), 12456 doi: 10.1021/acsami.6b02175
[36]
Bujak P, Wrobel Z, Penkala M, et al. Highly luminescent Ag−In−Zn−S quaternary nanocrystals: Growth mechanism and surface chemistry elucidation. Inorg Chem, 2019, 58(2), 1358 doi: 10.1021/acs.inorgchem.8b02916
[37]
Tsolekile N, Parani S, Matoetoe M C, et al. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. Nano-Struct Nano-Objects, 2017, 12, 46 doi: 10.1016/j.nanoso.2017.08.012
[38]
Zhang R L, Yang P, Wang Y Q. Facile synthesis of CuInS2/ZnS quantum dots with highly near-infrared photoluminescence via phosphor-free process. J Nanopart Res, 2013, 15(9), 1910 doi: 10.1007/s11051-013-1910-0
[39]
Guan Z Y, Tang A W, Lv P W, et al. New insights into the formation and color-tunable optical properties of multinary Cu –In –Zn-based chalcogenide semiconductor nanocrystals. Adv Optical Mater, 2018, 6, 1701389 doi: 10.1002/adom.201701389
[40]
Jiao M X, Li Y, Jia Y X, et al. Aqueously synthesized color-tunable quaternary Cu–In–Zn–S quantum dots for Cu(II) detection via mild and rapid cation exchange. Sens Actuators B, 2019, 294(1), 32 doi: 10.1016/j.snb.2019.05.027
[41]
Yang L, Antanovich A, Prudnikau A, et al. Highly luminescent Zn –Cu –In –S/ZnS core/gradient shell quantum dots prepared from indium sulfide by cation exchange for cell labeling and polymer composites. Nanotechnology, 2019, 30(39), 395603 doi: 10.1088/1361-6528/ab2aa2
[42]
Connor S T, Hsu C M, Weil B D, et al. Phase transformation of biphasic Cu2S–CuInS2 to monophasic CuInS2 nanorods. J Am Chem Soc, 2009, 131(13), 4962 doi: 10.1021/ja809901u
[43]
Torimoto T, Adachi T, Okazaki K, et al. Facile synthesis of ZnS–AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J Am Chem Soc, 2007, 129(41), 12388 doi: 10.1021/ja0750470
[44]
Chen Y Y, Wang Q, Zha T Y, et al. Green and facile synthesis of high-quality water-soluble Ag–In–S/ZnS core/shell quantum dots with obvious bandgap and sub-bandgap excitations. J Alloy Compd, 2018, 753(15), 364 doi: 10.1016/j.jallcom.2018.04.242
[45]
Masab M, Muhammad H, Shah F, et al. Facile synthesis of CdZnS QDs: Effects of different capping agents on the photoluminescence properties. Mat Sci Semicond Proc, 2018, 81, 113 doi: 10.1016/j.mssp.2018.03.023
[46]
Mrad M, Ben Chaabane T, Rinnert H, et al. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots. Inorg Chem, 2020, 59(9), 6220 doi: 10.1021/acs.inorgchem.0c00347
[47]
Mao B D, Wang B, Yu F R, et al. Hierarchical MoS2 nanoflowers on carbon cloth as an efficient cathode electrode for hydrogen evolution under all pH values. Int J Hydrogen Energ, 2018, 43(24), 11038 doi: 10.1016/j.ijhydene.2018.04.226
[48]
Moradi Alvand Z, Rajabi H R, Mirzaei A, et al. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater Sci Eng C, 2019, 98, 535 doi: 10.1016/j.msec.2019.01.010
[49]
Hu X B, Chen T, Xu Y Q, et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission. J Lumin, 2018, 200, 189 doi: 10.1016/j.jlumin.2018.04.025
[50]
Chen T, Hu X B, Xu Y Q, et al. Hydrothermal synthesis of highly fluorescent Ag –In –S/ZnS core/shell quantum dots for white light-emitting diodes. J Alloy Compd, 2019, 804(5), 119 doi: 10.1016/j.jallcom.2019.06.134
[51]
Das A, Snee P T. Synthetic developments of nontoxic quantum dots. Chemphyschem, 2016, 17(5), 598 doi: 10.1002/cphc.201500837
[52]
Li H, Chen Z H, Zhao L, et al. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Met, 2019, 38(5), 420 doi: 10.1007/s12598-019-01253-y
[53]
Kang X J, Yang Y C, Huang L J, et al. Large-scale synthesis of water-soluble CuInSe2/ZnS and AgInSe2/ZnS core/shell quantum dots. Green Chem, 2015, 17(8), 4482 doi: 10.1039/C5GC00908A
[54]
Cao W J, Qin Y L, Huang H, et al. Extraction of high-quality quantum dot photocatalysts via combination of size selection and electrochemiluminescence. Acs Sustain Chem Eng, 2019, 7(24), 20043 doi: 10.1021/acssuschemeng.9b05787
[55]
Tessier M D, Baquero E A, Dupont D, et al. Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots. Chem Mater, 2018, 30(19), 6877 doi: 10.1021/acs.chemmater.8b03117
[56]
Li Y M, Liu J, Wan X D, et al. Surface passivation enabled-structural engineering of I–III–VI2 nanocrystal photocatalysts. J Mater Chem A, 2020, 8(19), 9951 doi: 10.1039/D0TA01501F
[57]
Saidzhonov B M, Kozlovsky V F, Zaytsev V B, et al. Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties. J Lumin, 2019, 209, 170 doi: 10.1016/j.jlumin.2019.01.052
[58]
Yu K, Yang Y, Wang J, et al. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals. Nanotechnology, 2018, 29(25), 255703 doi: 10.1088/1361-6528/aabab7
[59]
Michalska M, Aboulaich A, Medjahdi G, et al. Amine ligands control of the optical properties and the shape of thermally grown core/shell CuInS2/ZnS quantum dots. J Alloy Compd, 2015, 645(5), 184 doi: 10.1016/j.jallcom.2015.04.162
[60]
Mao B D, Chuang C H, Lu F, et al. Study of the partial Ag-to-Zn cation exchange in AgInS2/ZnS nanocrystals. J Phys Chem C, 2012, 117(1), 648 doi: 10.1021/jp309202g
[61]
Kim J H, Kim K H, Yoon S Y, et al. Tunable emission of bluish Zn–Cu–Ga–S quantum dots by Mn doping and their electroluminescence. ACS Appl Mater Inter, 2019, 11(8), 8250 doi: 10.1021/acsami.8b20894
[62]
Paderick S, Kessler M, Hurlburt T J, et al. Synthesis and characterization of AgGaS2 nanoparticles: A study of growth and fluorescence. Chem Commun, 2017, 54(1), 62 doi: 10.1039/C7CC08070K
[63]
Zhang K W, Liu Y H, Wang B, et al. Three-dimensional interconnected MoS2 nanosheets on industrial 316 L stainless steel mesh as an efficient hydrogen evolution electrode. Int J Hydrogen Energ, 2019, 44(3), 1555 doi: 10.1016/j.ijhydene.2018.11.172
[64]
Omata T, Nose K, Kurimoto K, et al. Electronic transition responsible for size-dependent photoluminescence of colloidal CuInS2 quantum dots. J Mater Chem C, 2014, 2(33), 6867 doi: 10.1039/C4TC01144A
[65]
Mao B D, Chuang C H, Wang J W, et al. Synthesis and photophysical properties of ternary I–III–VI AgInS2 nanocrystals: Intrinsic versus surface states. J Phys Chem C, 2011, 115(18), 8945 doi: 10.1021/jp2011183
[66]
Zhang S B, Wei S H, Zunger A. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B, 1988, 57, 9642 doi: 10.1103/PhysRevB.57.9642
[67]
Debnath T, Ghosh H N. Ternary metal chalcogenides: Into the exciton and biexciton dynamics. J Phys Chem Lett, 2019, 10(20), 6227 doi: 10.1021/acs.jpclett.9b01596
[68]
Leach A D, Macdonald J E. Optoelectronic properties of CuInS2 nanocrystals and their origin. J Phys Chem Lett, 2016, 7(3), 572 doi: 10.1021/acs.jpclett.5b02211
[69]
Liu W Y, Zhang Y, Zhao J, et al. Photoluminescence of indium-rich copper indium sulfide quantum dots. J Lumin, 2015, 162, 191 doi: 10.1016/j.jlumin.2015.02.029
[70]
Fuhr A, Yun H J, Crooker S A, et al. Spectroscopic and magneto-optical signatures of Cu1+ and Cu2+ defects in copper indium sulfide quantum dots. ACS Nano, 2020, 14(2), 2212 doi: 10.1021/acsnano.9b09181
[71]
Knowles K E, Hartstein K H, Kilburn T B, et al. Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications. Chem Rev, 2016, 116(18), 10820 doi: 10.1021/acs.chemrev.6b00048
[72]
Zhong H Z, Lo S S, Mirkovic T, et al. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano, 2010, 4(9), 5253 doi: 10.1021/nn1015538
[73]
Rashkeev S N, Lambrecht W R L. Second-harmonic generation of I–III–VI2 chalcopyrite semiconductors: Effects of chemical substitutions. Phys Rev B, 2001, 63(16), 165212 doi: 10.1103/PhysRevB.63.165212
[74]
Gong G, Liu Y H, Mao B D, et al. Ag doping of Zn–In–S quantum dots for photocatalytic hydrogen evolution: Simultaneous bandgap narrowing and carrier lifetime elongation. Appl Catal B, 2017, 216, 11 doi: 10.1016/j.apcatb.2017.05.050
[75]
Li Y, Zhang J Z. Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev, 2009, 4(4), 517 doi: 10.1002/lpor.200910025
[76]
Jing L, Zhou W, Tian G, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem Soc Rev, 2013, 42(24), 9509 doi: 10.1039/c3cs60176e
[77]
Ye Y, Zang Z G, Zhou T W, et al. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. J Catal, 2018, 357, 100 doi: 10.1016/j.jcat.2017.11.002
[78]
Wang X L, Swihart M T. Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of Cu2– xS and CuxInyS nanocrystals. Chem Mater, 2015, 27(5), 1786 doi: 10.1021/cm504626u
[79]
Yarema O, Yarema M, Moser A, et al. Composition- and size-controlled I–V–VI Semiconductor nanocrystals. Chem Mater, 2020, 32(5), 2078 doi: 10.1021/acs.chemmater.9b05191
[80]
Mao B D, Chuang C H, Mccleese C, et al. Near-infrared emitting AgInS2/ZnS nanocrystals. J Phys Chem C, 2014, 118(25), 13883 doi: 10.1021/jp500872w
[81]
Yarema O, Yarema M, Bozyigit D, et al. Independent composition and size control for highly luminescent indium-rich silver indium selenide nanocrystals. ACS Nano, 2015, 9(11), 11134 doi: 10.1021/acsnano.5b04636
[82]
Yarema O, Yarema M, Lin W M, et al. Cu–In–Te and Ag–In–Te colloidal nanocrystals with tunable composition and size. Chem Commun, 2016, 52(72), 10878 doi: 10.1039/C6CC05571K
[83]
Liu C, Li X, Li J, et al. Carbon dots modifying sphere-flower CdIn2S4 on N-rGO sheet muti-dimensional photocatalyst for efficient visible degradation of 2,4-dichlorophenol. J Taiwan Inst Chem E, 2019, 99, 142 doi: 10.1016/j.jtice.2019.03.015
[84]
Zhu D X, Ye H H, Liu Z M. Seed-mediated growth of heterostructured Cu1.94S–MS (M = Zn, Cd, Mn) and alloyed CuNS2 (N = In, Ga) nanocrystals for use in structure- and composition-dependent photocatalytic hydrogen evolution. Nanoscale, 2020, 12, 6111 doi: 10.1039/C9NR10004K
[85]
Sharma D K, Hirata S, Bujak L, et al. Influence of Zn on the photoluminescence of colloidal (AgIn)xZn2(1− x)S2 nanocrystals. Phys Chem Chem Phys, 2017, 19(5), 3963 doi: 10.1039/C6CP07550A
[86]
Ng M T, Boothroyd C B, Vittal J J. One-pot synthesis of new-phase AgInSe2 nanorods. J Am Chem Soc, 2006, 128(22), 7118 doi: 10.1021/ja060543u
[87]
Liu Z, Liu J, Huang Y, et al. From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: non-injection synthesis and photocatalytic evolution. Nanoscale, 2018, 11(1), 158 doi: 10.1039/C8NR07353H
[88]
Liu Z M, Tang A W, Liu J, et al. Non-injection synthesis of L-shaped wurtzite Cu–Ga–Zn–S alloyed nanorods and their advantageous application in photocatalytic hydrogen evolution. J Mater Chem A, 2018, 6, 18649 doi: 10.1039/C8TA05395B
[89]
Regulacio M D, Han M Y. Multinary I–III–VI2 and I2–II–IV–VI4 semiconductor nanostructures for photocatalytic applications. Acc Chem Res, 2016, 49(3), 511 doi: 10.1021/acs.accounts.5b00535
[90]
Chen D, Ye J H. Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. J Phys Chem Solids, 2007, 68, 2317 doi: 10.1016/j.jpcs.2007.07.059
[91]
Minoshima W, Ito R, Takiyama T, et al. Photoluminescence characterization of ZnS–AgInS2 (ZAIS) nanoparticles adsorbed on plasmonic chip studied with fluorescence microscopy. J Photoch Photobio A, 2018, 367(1), 347 doi: 10.1016/j.jphotochem.2018.08.032
[92]
Vasekar P S, Dhere N G. Effect of sodium addition on Cu-deficient CuIn1− xGaxS2 thin film solar cells. Sol Energ Mat Sol C, 2009, 93(1), 69 doi: 10.1016/j.solmat.2008.04.013
[93]
Kandiel T A, Anjum D H, Takanabe K. Nano-sized quaternary CuGa2In3S8 as an efficient photocatalyst for solar hydrogen production. ChemSusChem, 2014, 7(11), 3112 doi: 10.1002/cssc.201402525
[94]
Yu X L, An X Q, Shavel A, et al. The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1 xGaxS2 nanocrystals. J Mater Chem A, 2014, 2(31), 12317 doi: 10.1039/C4TA01315H
[95]
Kandiel T A, Hutton G A M, Reisner E. Visible light driven hydrogen evolution with a noble metal free CuGa2In3S8 nanoparticle system in water. Catal Sci Technol, 2016, 6(17), 6536 doi: 10.1039/C6CY01103A
[96]
Hirase A, Hamanaka Y, Kuzuya T. Ligand-induced luminescence transformation in AgInS2 nanoparticles: From defect emission to band-edge emission. J Phys Chem Lett, 2020, 11(10), 3969 doi: 10.1021/acs.jpclett.0c01197
[97]
Peng Y, Shang L, Cao Y, et al. Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. Appl Surf Sci, 2015, 358, 485 doi: 10.1016/j.apsusc.2015.08.025
[98]
Jung S, Cha J H, Jung D Y. Synthesis of oleic acid-capped CuInS2 nanocrystals from bimetallic hydroxide precursor. Thin Solid Films, 2016, 603(31), 243 doi: 10.1016/j.tsf.2016.02.024
[99]
Yu S, Fan X B, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun, 2018, 9(1), 4009 doi: 10.1038/s41467-018-06294-y
[100]
Yang Y L, Liu Y H, Mao B D, et al. Facile surface engineering of Ag–In–Zn–S quantum dot photocatalysts by mixed-ligand passivation with improved charge carrier lifetime. Catal Lett, 2019, 149(7), 1800 doi: 10.1007/s10562-019-02718-6
[101]
Jagadeeswararao M, Dey S, Nag A, et al. Visible light-induced hydrogen generation using colloidal (ZnS)0.4(AgInS2)0.6 nanocrystals capped by S2− ions. J Mater Chem A, 2015, 3(16), 8276 doi: 10.1039/C5TA01240F
[102]
Kshirsagar A S, Gautam A, Khanna P K. Efficient photo-catalytic oxidative degradation of organic dyes using CuInSe2/TiO2 hybrid hetero-nanostructures. J Photoch Photobio A, 2017, 349(1), 73 doi: 10.1016/j.jphotochem.2017.08.058
[103]
Li K, Chai B, Peng T Y, et al. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light. Acs Catal, 2013, 3(2), 170 doi: 10.1021/cs300724r
[104]
Kobosko S M, Jara D H, Kamat P V. AgInS2–ZnS quantum dots: Excited state interactions with TiO2 and photovoltaic performance. ACS Appl Mater Inter, 2017, 9(39), 33379 doi: 10.1021/acsami.6b14604
[105]
Yang Y L, Mao B D, Gong G, et al. In-situ growth of Zn–AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int J Hydrogen Energy, 2019, 44(30), 15882 doi: 10.1016/j.ijhydene.2019.01.102
[106]
Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc, 2004, 126(15), 4943 doi: 10.1021/ja0315199
[107]
Lan M, Guo R M, Dou Y B, et al. Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation. Nano Energy, 2017, 33, 238 doi: 10.1016/j.nanoen.2017.01.046
[108]
Iervolino G, Vaiano V, Sannino D, et al. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B, 2017, 207, 182 doi: 10.1016/j.apcatb.2017.02.008
[109]
Xue F, Chen C, Fu W L, et al. Interfacial and dimensional effects of Pd Co-catalyst for efficient photocatalytic hydrogen generation. J Phys Chem C, 2018, 122(44), 25165 doi: 10.1021/acs.jpcc.8b06943
[110]
Huang J Q, Li G J, Zhou Z F, et al. Efficient photocatalytic hydrogen production over Rh and Nb codoped TiO2 nanorods. Chem Eng J, 2018, 337(1), 282 doi: 10.1016/j.cej.2017.12.088
[111]
Gong G, Liu Y H, Mao B D, et al. Mechanism study on the photocatalytic efficiency enhancement of MoS2 modified Zn–AgIn5S8 quantum dots. Rsc Adv, 2016, 6(101), 99023 doi: 10.1039/C6RA19949F
[112]
Huang T, Chen W, Liu T Y, et al. Hybrid of AgInZnS and MoS2 as efficient visible-light driven photocatalyst for hydrogen production. Int J Hydrogen Energ, 2017, 42(17), 12254 doi: 10.1016/j.ijhydene.2017.03.210
[113]
Zhen W L, Ning X F, Yang B J, et al. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl Catal B, 2018, 221, 243 doi: 10.1016/j.apcatb.2017.09.024
[114]
Daskalaki V M, Antoniadou M, Puma G L, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Energ Environ Sci, 2010, 44(19), 7200 doi: 10.1021/es9038962
[115]
Wang M J, Shen S L, Li L, et al. Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. J Mater Sci, 2017, 52(9), 5155 doi: 10.1007/s10853-017-0752-z
[116]
Zhang J, Chen J W, Luo Y, et al. Sandwich-like electrode with tungsten nitride nanosheets decorated with carbon dots as efficient electrocatalyst for oxygen reduction. Appl Surf Sci, 2019, 466(1), 911 doi: 10.1016/j.apsusc.2018.10.116
[117]
Ding P, Di J, Chen X, et al. S, N codoped graphene quantum dots embedded in (BiO)2CO3: Incorporating enzymatic-like catalysis in photocatalysis. Acs Sustain Chem Eng, 2018, 6(8), 10229 doi: 10.1021/acssuschemeng.8b01552
[118]
Ji M, Liu Y, Di J, et al. N-CQDs accelerating surface charge transfer of Bi4O5I2 hollow nanotubes with broad spectrum photocatalytic activity. Appl Catal B, 2018, 237, 1033 doi: 10.1016/j.apcatb.2018.06.014
[119]
Miao X, Yue X, Ji Z, et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight. Appl Catal B, 2018, 227, 459 doi: 10.1016/j.apcatb.2018.01.057
[120]
Zhou Y Q, Zahran E M, Quiroga B A, et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl Catal B, 2019, 248, 157 doi: 10.1016/j.apcatb.2019.02.019
[121]
Vaneski A, Schneider J, Susha A S, et al. Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. J Photoch Photobio C, 2014, 19, 52 doi: 10.1016/j.jphotochemrev.2013.12.001
[122]
Houtepen A J, Hens Z, Owen J S, et al. On the origin of surface traps in colloidal II–VI semiconductor nanocrystals. Chem Mater, 2017, 29(2), 752 doi: 10.1021/acs.chemmater.6b04648
[123]
Ou K L, Fan J C, Chen J K, et al. Hot-injection synthesis of monodispersed Cu2ZnSn(SxSe1– x)4 nanocrystals: Tunable composition and optical properties. J Mater Chem, 2012, 22(29), 14667 doi: 10.1039/c2jm31901b
[124]
Ren H, Wang M, Li Z, et al. Synthesis and characterization of CuZnSe2 nanocrystals in wurtzite, zinc blende, and core–shell polytypes. Chem Mater, 2019, 31(24), 10085 doi: 10.1021/acs.chemmater.9b03063
[125]
Liu W, Li C, Sun X, et al. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology, 2017, 28(48), 485705 doi: 10.1088/1361-6528/aa900b
[126]
Wu P, Wu X Y, Li W, et al. Ultra-small amorphous carbon dots: preparation, photoluminescence properties, and their application as TiO2 photosensitizers. J Mater Sci, 2018, 54(7), 5280 doi: 10.1007/s10853-018-3135-1
[127]
Ingole P P. A consolidated account of electrochemical determination of band structure parameters in II–VI semiconductor quantum dots: a tutorial review. Phys Chem Chem Phys, 2019, 21(9), 4695 doi: 10.1039/C8CP06847J
[128]
Miao X, Qu D, Yang D, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater, 2018, 30(1), 1704740 doi: 10.1002/adma.201704740
[129]
Hu S, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem Int Ed Engl, 2015, 54(10), 2970 doi: 10.1002/anie.201411004
[130]
Qi H, Wang S J, Jiang X H, et al. Research progress and challenges of blue light-emitting diodes based on II–VI semiconductor quantum dots. J Mater Chem C, 2020 doi: 10.1039/d0tc02272a
[131]
Du J, Singh R, Fedin I, et al. Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells. Nat Energy, 2020, 5(5), 409 doi: 10.1038/s41560-020-0617-6
[132]
Xu X Y, Bao Z J, Tang W S, et al. Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting. Carbon, 2017, 121, 201 doi: 10.1016/j.carbon.2017.05.095
[133]
Yan F, Sun Z, Zhang H, et al. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Mikrochim Acta, 2019, 186(8), 583 doi: 10.1007/s00604-019-3688-y
[134]
Lee Y S, Bu H B, Taniguchi T, et al. Hydrothermal synthesis of NAC-capped II–VI semiconductor ZnSe quantum dots in acidic condition. Chem Lett, 2016, 45(8), 878 doi: 10.1246/cl.160431
[135]
Ghali M, Rezk A, Eissa A M, et al. Hot-injection synthesis of ultrasmall CuIn3Se5 quantum dots and production of ink-coated films. J Phys Chem Solids, 2020, 146, 109610 doi: 10.1016/j.jpcs.2020.109610
[136]
Shang L, Zhou C, Bian T, et al. Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. J Mater Chem A, 2013, 1(14), 4552 doi: 10.1039/c3ta01685d
[137]
Delfin F A, Bruhl S P, Forsich C, et al. Carbon based DLC films: Influence of the processing parameters on the structure and properties. Materia-Brazil, 2018, 23(2), 1517 doi: 10.1590/s1517-707620180002.0395
[138]
Rigodanza F, Dordevic L, Arcudi F, et al. Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew Chem Int Ed, 2018, 57(18), 5062 doi: 10.1002/anie.201801707
[139]
Agarwal R, Krook N M, Ren M L, et al. Anion exchange in II–VI semiconducting nanostructures via atomic templating. Nano Lett, 2018, 18(3), 1620 doi: 10.1021/acs.nanolett.7b04424
[140]
Ren X Y, Liang W X, Wang P, et al. A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon, 2019, 141, 553 doi: 10.1016/j.carbon.2018.09.085
[141]
Kumar S, Nann T. Shape control of II–VI semiconductor nanomaterials. Small, 2006, 2(3), 316 doi: 10.1002/smll.200500357
[142]
Xie R G, Rutherford M, Peng X G. Formation of high-quality I−III−VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc, 2009, 131(15), 5691 doi: 10.1021/ja9005767
[143]
Du Fosse I, Ten Brinck S, Infante I, et al. Role of surface reduction in the formation of traps in n-doped II–VI semiconductor nanocrystals: How to charge without reducing the surface. Chem Mater, 2019, 31(12), 4575 doi: 10.1021/acs.chemmater.9b01395
[144]
Zhan Y Y, Shao Z B, Jiang T H, et al. Cation exchange synthesis of two-dimensional vertical Cu2S/CdS heterojunctions for photovoltaic device applications. J Mater Chem A, 2020, 8(2), 789 doi: 10.1039/C9TA11304E
[145]
Jain S, Bharti S, Bhullar G K, et al. I–III–VI core/shell QDs: Synthesis, characterizations and applications. J Lumin, 2020, 219, 116912 doi: 10.1016/j.jlumin.2019.116912
[146]
Zhang A, Dong C, Li L, et al. Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approach. Sci Rep, 2015, 5, 15227 doi: 10.1038/srep15227
[147]
Li L B, Dong T. Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C, 2018, 6(30), 7944 doi: 10.1039/C7TC05878K
[148]
Hu S, Yang W, Li N, et al. Carbon-dot-based heterojunction for engineering band-edge position and photocatalytic performance. Small, 2018, 14(44), 1803447 doi: 10.1002/smll.201803447
[149]
Yao B W, Huang H, Liu Y, et al. Carbon dots: A small conundrum. Trends Chem, 2019, 1(2), 235 doi: 10.1016/j.trechm.2019.02.003
[150]
Ludmerczki R, Mura S, Carbonaro C M, et al. Carbon dots from citric acid and its intermediates formed by thermal decomposition. Chem-Eur J, 2019, 25(51), 11963 doi: 10.1002/chem.201902497
[151]
Asano H, Tsukuda S, Kita M, et al. Colloidal Zn(Te,Se)/ZnS core/shell quantum dots exhibiting narrow-band and green photoluminescence. ACS Omega, 2018, 3(6), 6703 doi: 10.1021/acsomega.8b00612
[152]
Kameyama T, Sugiura K, Ishigami Y, et al. Rod-shaped Zn–Ag–In–Te nanocrystals with wavelength-tunable band-edge photoluminescence in the near-IR region. J Mater Chem C, 2018, 6(8), 2034 doi: 10.1039/C7TC05624A
[153]
Huang H Y, Cai K B, Chen P W, et al. Engineering ligand–metal charge transfer states in cross-linked gold nanoclusters for greener luminescent solar concentrators with solid-state quantum yields exceeding 50% and low reabsorption losses. J Phys Chem C, 2018, 122(34), 20019 doi: 10.1021/acs.jpcc.8b06212
[154]
Wang C, Chen Y, Hu T, et al. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method. Nanoscale, 2019, 11(24), 11967 doi: 10.1039/C9NR03038G
[155]
Ding H, Wei J S, Zhang P, et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small, 2018, 14(22), 1800612 doi: 10.1002/smll.201800612
[156]
Mansur A A P, Mansur H S, Mansur R L, et al. Bioengineered II–VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells. Spectrochim Acta A, 2018, 189(15), 393 doi: 10.1016/j.saa.2017.08.049
[157]
Xia C, Wu W, Yu T, et al. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano, 2018, 12(8), 8350 doi: 10.1021/acsnano.8b03641
[158]
Li J Z, Chen J L, Shen Y M, et al. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Research, 2018, 11(8), 3991 doi: 10.1007/s12274-018-1981-4
[159]
Hu J H, Song J L Q, Tang Z S, et al. Phospholipid-stabilized CuxAg1− xInSe2 nanocrystals as luminophores: fabrication, optical properties, and biological application. J Mater Chem C, 2020, 8(17), 5821 doi: 10.1039/D0TC00014K
[160]
Lu J, Liu H, Zhang X, et al. One-dimensional nanostructures of II–VI ternary alloys: synthesis, optical properties, and applications. Nanoscale, 2018, 10(37), 17456 doi: 10.1039/C8NR05019H
[161]
Wieliczka B M, Kaledin A L, Buhro W E, et al. Wavefunction engineering in CdSe/PbS core/shell quantum dots. ACS Nano, 2018, 12(6), 5539 doi: 10.1021/acsnano.8b01248
[162]
Wu Y J, Zhang Y, Sui Y R, et al. Bandgap engineering of Cu2InxZn1– xSn(S,Se)4 alloy films for photovoltaic applications. Ceram Int, 2018, 44(2), 1942 doi: 10.1016/j.ceramint.2017.10.137
[163]
Sun J, An L, Xue G, et al. Wavefunction engineering for efficient photoinduced-electron transfer in CuInS2 quantum dot-sensitized solar cells. Nanotechnology, 2020, 31(21), 215408 doi: 10.1088/1361-6528/ab746c
[164]
Chen Y Z, Li W H, Li L, et al. Progress in organic photocatalysts. Rare Met, 2017, 37(1), 1 doi: 10.1007/s12598-017-0953-2
[165]
Liu X, Yan Y, Da Z, et al. Significantly enhanced photocatalytic performance of CdS coupled nanosheets and the mechanism study. Chem Eng J, 2014, 241, 243 doi: 10.1016/j.cej.2013.12.058
[166]
Meinardi F, Mcdaniel H, Carulli F, et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat Nanotechnol, 2015, 10(10), 878 doi: 10.1038/nnano.2015.178
[167]
Li J, Liu K, Xue J, et al. CQDs preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J Catal, 2019, 369, 450 doi: 10.1016/j.jcat.2018.11.026
[168]
Mazzio K A, Prasad S K K, Okamoto K, et al. End-functionalized semiconducting polymers as reagents in the synthesis of hybrid II–VI nanoparticles. Langmuir, 2018, 34(33), 9692 doi: 10.1021/acs.langmuir.8b01307
[169]
Meng X B, Sheng J L, Tang H L, et al. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl Catal B, 2019, 244, 340 doi: 10.1016/j.apcatb.2018.11.018
[170]
Di J, Xia J, Huang Y, et al. Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation. Chem Eng J, 2016, 302, 334 doi: 10.1016/j.cej.2016.05.009
[171]
Zhukovskyi M, Yashan H, Kuno M. Low-dimensional II–VI semiconductors for photocatalytic hydrogen generation. Res Chem Intermed, 2019, 45(8), 4249 doi: 10.1007/s11164-019-03904-2
[172]
Qin Y, Li H, Lu J, et al. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem Eng J, 2020, 384, 123275 doi: 10.1016/j.cej.2019.123275
[173]
Jiao M, Li Y, Jia Y, et al. Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. J Colloid Interface Sci, 2020, 565, 35 doi: 10.1016/j.jcis.2020.01.006
[174]
Fan F J, Wu L, Yu S H. Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energ Environ Sci, 2014, 7(1), 190 doi: 10.1039/C3EE41437J
[175]
Ansi V A, Vijisha K R, Muraleedharan K, et al. Fluorescent carbon nanodots as efficient nitro aromatic sensor- analysis based on computational perspectives. Sens Actuators A, 2020, 302(1), 111817 doi: 10.1016/j.sna.2019.111817
Fig. 1.  (Color online) Schematic illustration for the bridging role of I–III–VI QDs between traditional II–VI QDs and emerging new carbon dots.

Fig. 2.  (Color online) Schematic synthetic processes of I–III–VI QDs. Reprinted from Ref. [14].

Fig. 3.  (Color online) Schematic alloying and selective cation exchange process of quaternary AgInS2–ZnS QDs. Reprinted from Ref. [60].

Fig. 4.  (Color online) (a) Theoretical calculated[25] and (b) experimental results[14] of the size-dependent optical band gap of chalcopyrite I–III–VI semiconductor QDs. The band gaps in panel (a) were calculated based on QDs with sizes of 2 to 5 nm. Reprinted from Refs. [14, 25].

Fig. 5.  (Color online) Schematic defect states[66] and charge carrier recombination pathways[67] of DAPs. Reprinted from Refs. [66, 67].

Fig. 6.  (Color online) Size- and composition-dependent photocatalytic properties of ZAIS QDs. Reprinted from Ref. [85].

Table 1.   Bridging between traditional II–VI QDs and emerging carbon dots by I–III–VI QDs.

II–VI QDsI–III–VI QDsCarbon dots
StructureQuasi-spherical[121] or faceted nanocrystalline core[122]Quasi-spherical[123] or faceted nanocrystalline core[124]Crystalline (graphitic)[125] or amorphous carbon core (often with irregular shape)[126]
Capping ligands[127]Capping ligands[8]Surface functional groups[128]
Stoichiometric compositionNonstoichiometric composition[14]Nonstoichiometric carbon core and surface[129]
Mainly surface defects[130]Abundant inner (intrinsic)/surface defects[131]Multi energy levels and abundant inner/surface defects[132, 133]
SynthesisOrganometallic hot-injection method[134]Organometallic hot-injection
method[135, 136]
Both up-side-down[137] and bottom-up methods[138]
Ionic reactions[139]Ionic reactions[56]Radical reactions[140]
Precise size and shape control[141]Challenging: balance of cation reactivity[142]Challenging: difficult to control; prefer organic synthetic methods
Relatively mature doping[143] and heterojunction[144] construction;Competition of core/shell[145] vs. interfacial alloying[146];Doping[147] and heterojunction[148] construction: lots of study but very difficult for precise control[149]
Profound understanding of growth kinetics and synthetic chemistryDifficult to obtain clear heterojuntionsGrowth kinetics and synthetic chemistry: complicated reaction intermediates and byproducts[150]
Optical propertiesNarrow PL peak[151], high PL QYs, small stokes shift, short lifetime (for band edge emission)[152]New: large stokes shift, wide PL peak, long lifetime[152, 153]New: excitation-dependent emission, wide PL peak (multi states), long lifetime (fl & pl), up conversion[154, 155]
Quantum size effect: clear[156]Quantum size effect[1]: challenging (composition-dependent)Quantum size effect: unclear (unkown core composition & surface groups)
Extinction coefficient: clearOnly CuInS2[157]No report
Mechanism: interband recombination & surface defect trap states[158]Mechanism: DAP recombination[159]Mechanism: sp2 domain-induced interband PL, surface molecular emission, AIE, etc.
Band gap engineering[160] and wavefunction engineering[161]Band gap engineering[162] and wave function engineering[163]: size-, composition and structure dependent[14]Band gap engineering and wavefunction engineering: very challenging[154, 155]
PhotocatalysisCombined Homogeneous/
heterogeneous photocataly-
sis[164, 165]
Heavy metal free[166]Contribute on light absorption[119, 167]
High absorbance[160]; high surface area[168]Continuous band gap tuning via composition[14]Charge separation and cocatalysts[169, 170]
Type-II heterojunction for efficient charge separation[171, 172]Long lifetime[173]Photogenerated e-/h+, photogenerated protons and photo-controlled electron transfer[23]
Charge carrier dynamics:100% AQEDelicate manipulation and utilization of intrinsic and surface defects[174]Multi electron donating/accepting[175]
DownLoad: CSV
[1]
Li S Q, Tang X S, Zang Z G, et al. I–III–VI chalcogenide semiconductor nanocrystals: Synthesis, properties, and applications. Chin J Catal, 2018, 39(4), 590 doi: 10.1016/S1872-2067(18)63052-9
[2]
Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 2005, 437(7063), 1334 doi: 10.1038/nature04204
[3]
Tae E L, Lee K E, Jeong J S, et al. Synthesis of diamond-shape titanate molecular sheets with different sizes and realization of quantum confinement effect during dimensionality reduction from two to zero. J Am Chem Soc, 2008, 130(20), 6534 doi: 10.1021/ja711467g
[4]
Cao Y, Guo J, Shi R, et al. Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. Nat Commun, 2018, 9(1), 2379 doi: 10.1038/s41467-018-04837-x
[5]
Ma H T, Pan L J, Wang J, et al. Synthesis of AgInS2 QDs in droplet microreactors: Online fluorescence regulating through temperature control. Chin Chem Lett, 2019, 30(1), 79 doi: 10.1016/j.cclet.2018.04.033
[6]
Stroyuk O, Raevskaya A, Spranger F, et al. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag –In –S quantum dots. J Phys Chem C, 2018, 122(25), 13648 doi: 10.1021/acs.jpcc.8b00106
[7]
Oluwafemi O S, May B M M, Parani S, et al. Facile, large scale synthesis of water soluble AgInSe2/ZnSe quantum dots and its cell viability assessment on different cell lines. Mat Sci Eng C, 2020, 106, 110181 doi: 10.1016/j.msec.2019.110181
[8]
Zhu X S, Demillo V G, Chen S Q, et al. Development of non-cadmium I–III–VI quantum dots and their surface modification for biomedical applications. Mater Sci Forum, 2018, 915, 163 doi: 10.4028/www.scientific.net/MSF.915.163
[9]
Kalinowska D, Drozd M, Grabowska-Jadach I, et al. The influence of selected omega-mercaptocarboxylate ligands on physicochemical properties and biological activity of Cd-free, zinccopperindium sulfide colloidal nanocrystals. Mater Sci Eng C, 2019, 97, 583 doi: 10.1016/j.msec.2018.12.043
[10]
Chen B, Pradhan N, Zhong H. From large-scale synthesis to lighting device applications of ternary I–III–VI semiconductor nanocrystals: Inspiring greener material emitters. J Phys Chem Lett, 2018, 9(2), 435 doi: 10.1021/acs.jpclett.7b03037
[11]
Yoon S Y, Kim J H, Kim K H, et al. High-efficiency blue and white electroluminescent devices based on non-Cd I−III−VI quantum dots. Nano Energy, 2019, 63, 103869 doi: 10.1016/j.nanoen.2019.103869
[12]
Rui W, Xin T, Channa A I, et al. Environment-friendly Mn-alloyed core/shell quantum dots for high-efficiency photoelectrochemical cells. J Mater Chem A, 2020, 8(21), 10736 doi: 10.1039/D0TA00953A
[13]
Jalalah M, Al-Assiri M S, Park J G. One-pot gram-scale, eco-friendly, and cost-effective synthesis of CuGaS2/ZnS nanocrystals as efficient UV-harvesting down-converter for photovoltaics. Adv Energy Mater, 2018, 8(20), 1703418 doi: 10.1002/aenm.201703418
[14]
Yarema O, Yarema M, Wood V. Tuning the composition of multicomponent semiconductor nanocrystals: The case of I–III–VI materials. Chem Mater, 2018, 30(5), 1446 doi: 10.1021/acs.chemmater.7b04710
[15]
Tan L L, Liu Y H, Mao B D, et al. Effective bandgap narrowing of Cu–In–Zn–S quantum dots for photocatalytic H2 production via cocatalyst-alleviated charge recombination. Inorg Chem Front, 2018, 5(1), 258 doi: 10.1039/C7QI00607A
[16]
Feng J, Yang X S, Feng G W, et al. The experimental determination of composition-dependent molar extinction coefficient of nonstoichiometric Zn–Cu–In–S nanocrystals. Mater Res Express, 2018, 5(7), 075030 doi: 10.1088/2053-1591/aad14d
[17]
Nong J P, Lan G L, Jin W F, et al. Eco-friendly and high-performance photoelectrochemical anode based on AgInS2 quantum dots embedded in 3D graphene nanowalls. J Mater Chem C, 2019, 7(32), 9830 doi: 10.1039/C9TC01395D
[18]
Stanbery B J. Copper indium selenides and related materials for photovoltaic devices. Crit Rev Solid State, 2002, 27(2), 73 doi: 10.1080/20014091104215
[19]
Feurer T, Reinhard P, Avancini E, et al. Progress in thin film CIGS photovoltaics - Research and development, manufacturing, and applications. Prog Photovolt, 2017, 25(7), 645 doi: 10.1002/pip.2811
[20]
Kameyama T, Kishi M, Miyamae C, et al. Wavelength-tunable band-edge photoluminescence of nonstoichiometric Ag –In –S nanoparticles via Ga3+ Doping. ACS Appl Mater Inter, 2018, 10(49), 42844 doi: 10.1021/acsami.8b15222
[21]
Huang D, Jiang J W, Guo J, et al. General rules of the sub-band gaps in group-IV (Si, Ge, and Sn)-doped I–III–VI2-type chalcopyrite compounds for intermediate band solar cell: A first-principles study. Mater Sci Eng B, 2018, 236–237, 147 doi: 10.1016/j.mseb.2018.11.006
[22]
Chen M M, Xue H G, Guo S P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coordin Chem Rev, 2018, 368(1), 115 doi: 10.1016/j.ccr.2018.04.014
[23]
Liu Y H, Huang H, Cao W J, et al. Advances in carbon dots: from the perspective of traditional quantum dots. Mater Chem Front, 2020, 4(6), 1586 doi: 10.1039/D0QM00090F
[24]
Girma W M, Fahmi M Z, Permadi A, et al. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. J Mater Chem B, 2017, 5(31), 6193 doi: 10.1039/C7TB01156C
[25]
Omata T, Nose K, Otsuka-Yao-Matsuo S. Size dependent optical band gap of ternary I–III–VI2 semiconductor nanocrystals. J Appl Phys, 2009, 105(7), 073106 doi: 10.1063/1.3103768
[26]
Aldakov D, Lefrancois A, Reiss P. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J Mater Chem C, 2013, 1(24), 3756 doi: 10.1039/c3tc30273c
[27]
Wei S H, Ferreira L G, Zunger A. First-principles calculation of the order-disorder transition in chalcopyrite semiconductors. Phys Rev B, 1992, 45(5), 2533 doi: 10.1103/PhysRevB.45.2533
[28]
Sandroni M, Wegner K D, Aldakov D, et al. Prospects of chalcopyrite-type nanocrystals for energy applications. Acs Energy Lett, 2017, 2(5), 1076 doi: 10.1021/acsenergylett.7b00003
[29]
Nakamura H, Kato W, Uehara M, et al. Tunable photoluminescence wavelength of chalcopyrite CuInS2-based semiconductor nanocrystals synthesized in a colloidal system. Chem Mater, 2006, 18(14), 3330 doi: 10.1021/cm0518022
[30]
Whitham P J, Marchioro A, Knowles K E, et al. Single-particle photoluminescence spectra, blinking, and delayed luminescence of colloidal CuInS2 nanocrystals. J Phys Chem C, 2016, 120(30), 17136 doi: 10.1021/acs.jpcc.6b06425
[31]
Takarabe K, Kawai K, Minomura S, et al. Electronic structure of some I–III–VI2 chalcopyrite semiconductors studied by synchrotron radiation. J Appl Phys, 1992, 71(1), 441 doi: 10.1063/1.350675
[32]
Zhang L L, Pan Z X, Wang W, et al. Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J Mater Chem A, 2017, 5(40), 21442 doi: 10.1039/C7TA06904A
[33]
Bouich A, Hartiti B, Ullah S, et al. Experimental, theoretical, and numerical simulation of the performance of CuInxGa(1– x)S2-based solar cells. Optik, 2019, 183, 137 doi: 10.1016/j.ijleo.2019.02.067
[34]
Pradeepkumar M S, Pal A S, Singh A, et al. Phase separation in wurtzite CuInxGa1− xS2 nanoparticles. J Mater Sci, 2020, 55(26), 11841 doi: 10.1007/s10853-020-04844-8
[35]
Ilaiyaraja P, Mocherla P S, Srinivasan T K, et al. Synthesis of Cu-deficient and Zn-graded Cu–In–Zn–S quantum dots and hybrid inorganic-organic nanophosphor composite for white light emission. ACS Appl Mater Interfaces, 2016, 8(19), 12456 doi: 10.1021/acsami.6b02175
[36]
Bujak P, Wrobel Z, Penkala M, et al. Highly luminescent Ag−In−Zn−S quaternary nanocrystals: Growth mechanism and surface chemistry elucidation. Inorg Chem, 2019, 58(2), 1358 doi: 10.1021/acs.inorgchem.8b02916
[37]
Tsolekile N, Parani S, Matoetoe M C, et al. Evolution of ternary I–III–VI QDs: Synthesis, characterization and application. Nano-Struct Nano-Objects, 2017, 12, 46 doi: 10.1016/j.nanoso.2017.08.012
[38]
Zhang R L, Yang P, Wang Y Q. Facile synthesis of CuInS2/ZnS quantum dots with highly near-infrared photoluminescence via phosphor-free process. J Nanopart Res, 2013, 15(9), 1910 doi: 10.1007/s11051-013-1910-0
[39]
Guan Z Y, Tang A W, Lv P W, et al. New insights into the formation and color-tunable optical properties of multinary Cu –In –Zn-based chalcogenide semiconductor nanocrystals. Adv Optical Mater, 2018, 6, 1701389 doi: 10.1002/adom.201701389
[40]
Jiao M X, Li Y, Jia Y X, et al. Aqueously synthesized color-tunable quaternary Cu–In–Zn–S quantum dots for Cu(II) detection via mild and rapid cation exchange. Sens Actuators B, 2019, 294(1), 32 doi: 10.1016/j.snb.2019.05.027
[41]
Yang L, Antanovich A, Prudnikau A, et al. Highly luminescent Zn –Cu –In –S/ZnS core/gradient shell quantum dots prepared from indium sulfide by cation exchange for cell labeling and polymer composites. Nanotechnology, 2019, 30(39), 395603 doi: 10.1088/1361-6528/ab2aa2
[42]
Connor S T, Hsu C M, Weil B D, et al. Phase transformation of biphasic Cu2S–CuInS2 to monophasic CuInS2 nanorods. J Am Chem Soc, 2009, 131(13), 4962 doi: 10.1021/ja809901u
[43]
Torimoto T, Adachi T, Okazaki K, et al. Facile synthesis of ZnS–AgInS2 solid solution nanoparticles for a color-adjustable luminophore. J Am Chem Soc, 2007, 129(41), 12388 doi: 10.1021/ja0750470
[44]
Chen Y Y, Wang Q, Zha T Y, et al. Green and facile synthesis of high-quality water-soluble Ag–In–S/ZnS core/shell quantum dots with obvious bandgap and sub-bandgap excitations. J Alloy Compd, 2018, 753(15), 364 doi: 10.1016/j.jallcom.2018.04.242
[45]
Masab M, Muhammad H, Shah F, et al. Facile synthesis of CdZnS QDs: Effects of different capping agents on the photoluminescence properties. Mat Sci Semicond Proc, 2018, 81, 113 doi: 10.1016/j.mssp.2018.03.023
[46]
Mrad M, Ben Chaabane T, Rinnert H, et al. Aqueous synthesis for highly emissive 3-mercaptopropionic acid-capped AIZS quantum dots. Inorg Chem, 2020, 59(9), 6220 doi: 10.1021/acs.inorgchem.0c00347
[47]
Mao B D, Wang B, Yu F R, et al. Hierarchical MoS2 nanoflowers on carbon cloth as an efficient cathode electrode for hydrogen evolution under all pH values. Int J Hydrogen Energ, 2018, 43(24), 11038 doi: 10.1016/j.ijhydene.2018.04.226
[48]
Moradi Alvand Z, Rajabi H R, Mirzaei A, et al. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater Sci Eng C, 2019, 98, 535 doi: 10.1016/j.msec.2019.01.010
[49]
Hu X B, Chen T, Xu Y Q, et al. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission. J Lumin, 2018, 200, 189 doi: 10.1016/j.jlumin.2018.04.025
[50]
Chen T, Hu X B, Xu Y Q, et al. Hydrothermal synthesis of highly fluorescent Ag –In –S/ZnS core/shell quantum dots for white light-emitting diodes. J Alloy Compd, 2019, 804(5), 119 doi: 10.1016/j.jallcom.2019.06.134
[51]
Das A, Snee P T. Synthetic developments of nontoxic quantum dots. Chemphyschem, 2016, 17(5), 598 doi: 10.1002/cphc.201500837
[52]
Li H, Chen Z H, Zhao L, et al. Synthesis of TiO2@ZnIn2S4 hollow nanospheres with enhanced photocatalytic hydrogen evolution. Rare Met, 2019, 38(5), 420 doi: 10.1007/s12598-019-01253-y
[53]
Kang X J, Yang Y C, Huang L J, et al. Large-scale synthesis of water-soluble CuInSe2/ZnS and AgInSe2/ZnS core/shell quantum dots. Green Chem, 2015, 17(8), 4482 doi: 10.1039/C5GC00908A
[54]
Cao W J, Qin Y L, Huang H, et al. Extraction of high-quality quantum dot photocatalysts via combination of size selection and electrochemiluminescence. Acs Sustain Chem Eng, 2019, 7(24), 20043 doi: 10.1021/acssuschemeng.9b05787
[55]
Tessier M D, Baquero E A, Dupont D, et al. Interfacial oxidation and photoluminescence of InP-based core/shell quantum dots. Chem Mater, 2018, 30(19), 6877 doi: 10.1021/acs.chemmater.8b03117
[56]
Li Y M, Liu J, Wan X D, et al. Surface passivation enabled-structural engineering of I–III–VI2 nanocrystal photocatalysts. J Mater Chem A, 2020, 8(19), 9951 doi: 10.1039/D0TA01501F
[57]
Saidzhonov B M, Kozlovsky V F, Zaytsev V B, et al. Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties. J Lumin, 2019, 209, 170 doi: 10.1016/j.jlumin.2019.01.052
[58]
Yu K, Yang Y, Wang J, et al. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals. Nanotechnology, 2018, 29(25), 255703 doi: 10.1088/1361-6528/aabab7
[59]
Michalska M, Aboulaich A, Medjahdi G, et al. Amine ligands control of the optical properties and the shape of thermally grown core/shell CuInS2/ZnS quantum dots. J Alloy Compd, 2015, 645(5), 184 doi: 10.1016/j.jallcom.2015.04.162
[60]
Mao B D, Chuang C H, Lu F, et al. Study of the partial Ag-to-Zn cation exchange in AgInS2/ZnS nanocrystals. J Phys Chem C, 2012, 117(1), 648 doi: 10.1021/jp309202g
[61]
Kim J H, Kim K H, Yoon S Y, et al. Tunable emission of bluish Zn–Cu–Ga–S quantum dots by Mn doping and their electroluminescence. ACS Appl Mater Inter, 2019, 11(8), 8250 doi: 10.1021/acsami.8b20894
[62]
Paderick S, Kessler M, Hurlburt T J, et al. Synthesis and characterization of AgGaS2 nanoparticles: A study of growth and fluorescence. Chem Commun, 2017, 54(1), 62 doi: 10.1039/C7CC08070K
[63]
Zhang K W, Liu Y H, Wang B, et al. Three-dimensional interconnected MoS2 nanosheets on industrial 316 L stainless steel mesh as an efficient hydrogen evolution electrode. Int J Hydrogen Energ, 2019, 44(3), 1555 doi: 10.1016/j.ijhydene.2018.11.172
[64]
Omata T, Nose K, Kurimoto K, et al. Electronic transition responsible for size-dependent photoluminescence of colloidal CuInS2 quantum dots. J Mater Chem C, 2014, 2(33), 6867 doi: 10.1039/C4TC01144A
[65]
Mao B D, Chuang C H, Wang J W, et al. Synthesis and photophysical properties of ternary I–III–VI AgInS2 nanocrystals: Intrinsic versus surface states. J Phys Chem C, 2011, 115(18), 8945 doi: 10.1021/jp2011183
[66]
Zhang S B, Wei S H, Zunger A. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B, 1988, 57, 9642 doi: 10.1103/PhysRevB.57.9642
[67]
Debnath T, Ghosh H N. Ternary metal chalcogenides: Into the exciton and biexciton dynamics. J Phys Chem Lett, 2019, 10(20), 6227 doi: 10.1021/acs.jpclett.9b01596
[68]
Leach A D, Macdonald J E. Optoelectronic properties of CuInS2 nanocrystals and their origin. J Phys Chem Lett, 2016, 7(3), 572 doi: 10.1021/acs.jpclett.5b02211
[69]
Liu W Y, Zhang Y, Zhao J, et al. Photoluminescence of indium-rich copper indium sulfide quantum dots. J Lumin, 2015, 162, 191 doi: 10.1016/j.jlumin.2015.02.029
[70]
Fuhr A, Yun H J, Crooker S A, et al. Spectroscopic and magneto-optical signatures of Cu1+ and Cu2+ defects in copper indium sulfide quantum dots. ACS Nano, 2020, 14(2), 2212 doi: 10.1021/acsnano.9b09181
[71]
Knowles K E, Hartstein K H, Kilburn T B, et al. Luminescent colloidal semiconductor nanocrystals containing copper: Synthesis, photophysics, and applications. Chem Rev, 2016, 116(18), 10820 doi: 10.1021/acs.chemrev.6b00048
[72]
Zhong H Z, Lo S S, Mirkovic T, et al. Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties. ACS Nano, 2010, 4(9), 5253 doi: 10.1021/nn1015538
[73]
Rashkeev S N, Lambrecht W R L. Second-harmonic generation of I–III–VI2 chalcopyrite semiconductors: Effects of chemical substitutions. Phys Rev B, 2001, 63(16), 165212 doi: 10.1103/PhysRevB.63.165212
[74]
Gong G, Liu Y H, Mao B D, et al. Ag doping of Zn–In–S quantum dots for photocatalytic hydrogen evolution: Simultaneous bandgap narrowing and carrier lifetime elongation. Appl Catal B, 2017, 216, 11 doi: 10.1016/j.apcatb.2017.05.050
[75]
Li Y, Zhang J Z. Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev, 2009, 4(4), 517 doi: 10.1002/lpor.200910025
[76]
Jing L, Zhou W, Tian G, et al. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chem Soc Rev, 2013, 42(24), 9509 doi: 10.1039/c3cs60176e
[77]
Ye Y, Zang Z G, Zhou T W, et al. Theoretical and experimental investigation of highly photocatalytic performance of CuInZnS nanoporous structure for removing the NO gas. J Catal, 2018, 357, 100 doi: 10.1016/j.jcat.2017.11.002
[78]
Wang X L, Swihart M T. Controlling the size, shape, phase, band gap, and localized surface plasmon resonance of Cu2– xS and CuxInyS nanocrystals. Chem Mater, 2015, 27(5), 1786 doi: 10.1021/cm504626u
[79]
Yarema O, Yarema M, Moser A, et al. Composition- and size-controlled I–V–VI Semiconductor nanocrystals. Chem Mater, 2020, 32(5), 2078 doi: 10.1021/acs.chemmater.9b05191
[80]
Mao B D, Chuang C H, Mccleese C, et al. Near-infrared emitting AgInS2/ZnS nanocrystals. J Phys Chem C, 2014, 118(25), 13883 doi: 10.1021/jp500872w
[81]
Yarema O, Yarema M, Bozyigit D, et al. Independent composition and size control for highly luminescent indium-rich silver indium selenide nanocrystals. ACS Nano, 2015, 9(11), 11134 doi: 10.1021/acsnano.5b04636
[82]
Yarema O, Yarema M, Lin W M, et al. Cu–In–Te and Ag–In–Te colloidal nanocrystals with tunable composition and size. Chem Commun, 2016, 52(72), 10878 doi: 10.1039/C6CC05571K
[83]
Liu C, Li X, Li J, et al. Carbon dots modifying sphere-flower CdIn2S4 on N-rGO sheet muti-dimensional photocatalyst for efficient visible degradation of 2,4-dichlorophenol. J Taiwan Inst Chem E, 2019, 99, 142 doi: 10.1016/j.jtice.2019.03.015
[84]
Zhu D X, Ye H H, Liu Z M. Seed-mediated growth of heterostructured Cu1.94S–MS (M = Zn, Cd, Mn) and alloyed CuNS2 (N = In, Ga) nanocrystals for use in structure- and composition-dependent photocatalytic hydrogen evolution. Nanoscale, 2020, 12, 6111 doi: 10.1039/C9NR10004K
[85]
Sharma D K, Hirata S, Bujak L, et al. Influence of Zn on the photoluminescence of colloidal (AgIn)xZn2(1− x)S2 nanocrystals. Phys Chem Chem Phys, 2017, 19(5), 3963 doi: 10.1039/C6CP07550A
[86]
Ng M T, Boothroyd C B, Vittal J J. One-pot synthesis of new-phase AgInSe2 nanorods. J Am Chem Soc, 2006, 128(22), 7118 doi: 10.1021/ja060543u
[87]
Liu Z, Liu J, Huang Y, et al. From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: non-injection synthesis and photocatalytic evolution. Nanoscale, 2018, 11(1), 158 doi: 10.1039/C8NR07353H
[88]
Liu Z M, Tang A W, Liu J, et al. Non-injection synthesis of L-shaped wurtzite Cu–Ga–Zn–S alloyed nanorods and their advantageous application in photocatalytic hydrogen evolution. J Mater Chem A, 2018, 6, 18649 doi: 10.1039/C8TA05395B
[89]
Regulacio M D, Han M Y. Multinary I–III–VI2 and I2–II–IV–VI4 semiconductor nanostructures for photocatalytic applications. Acc Chem Res, 2016, 49(3), 511 doi: 10.1021/acs.accounts.5b00535
[90]
Chen D, Ye J H. Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. J Phys Chem Solids, 2007, 68, 2317 doi: 10.1016/j.jpcs.2007.07.059
[91]
Minoshima W, Ito R, Takiyama T, et al. Photoluminescence characterization of ZnS–AgInS2 (ZAIS) nanoparticles adsorbed on plasmonic chip studied with fluorescence microscopy. J Photoch Photobio A, 2018, 367(1), 347 doi: 10.1016/j.jphotochem.2018.08.032
[92]
Vasekar P S, Dhere N G. Effect of sodium addition on Cu-deficient CuIn1− xGaxS2 thin film solar cells. Sol Energ Mat Sol C, 2009, 93(1), 69 doi: 10.1016/j.solmat.2008.04.013
[93]
Kandiel T A, Anjum D H, Takanabe K. Nano-sized quaternary CuGa2In3S8 as an efficient photocatalyst for solar hydrogen production. ChemSusChem, 2014, 7(11), 3112 doi: 10.1002/cssc.201402525
[94]
Yu X L, An X Q, Shavel A, et al. The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1 xGaxS2 nanocrystals. J Mater Chem A, 2014, 2(31), 12317 doi: 10.1039/C4TA01315H
[95]
Kandiel T A, Hutton G A M, Reisner E. Visible light driven hydrogen evolution with a noble metal free CuGa2In3S8 nanoparticle system in water. Catal Sci Technol, 2016, 6(17), 6536 doi: 10.1039/C6CY01103A
[96]
Hirase A, Hamanaka Y, Kuzuya T. Ligand-induced luminescence transformation in AgInS2 nanoparticles: From defect emission to band-edge emission. J Phys Chem Lett, 2020, 11(10), 3969 doi: 10.1021/acs.jpclett.0c01197
[97]
Peng Y, Shang L, Cao Y, et al. Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. Appl Surf Sci, 2015, 358, 485 doi: 10.1016/j.apsusc.2015.08.025
[98]
Jung S, Cha J H, Jung D Y. Synthesis of oleic acid-capped CuInS2 nanocrystals from bimetallic hydroxide precursor. Thin Solid Films, 2016, 603(31), 243 doi: 10.1016/j.tsf.2016.02.024
[99]
Yu S, Fan X B, Wang X, et al. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat Commun, 2018, 9(1), 4009 doi: 10.1038/s41467-018-06294-y
[100]
Yang Y L, Liu Y H, Mao B D, et al. Facile surface engineering of Ag–In–Zn–S quantum dot photocatalysts by mixed-ligand passivation with improved charge carrier lifetime. Catal Lett, 2019, 149(7), 1800 doi: 10.1007/s10562-019-02718-6
[101]
Jagadeeswararao M, Dey S, Nag A, et al. Visible light-induced hydrogen generation using colloidal (ZnS)0.4(AgInS2)0.6 nanocrystals capped by S2− ions. J Mater Chem A, 2015, 3(16), 8276 doi: 10.1039/C5TA01240F
[102]
Kshirsagar A S, Gautam A, Khanna P K. Efficient photo-catalytic oxidative degradation of organic dyes using CuInSe2/TiO2 hybrid hetero-nanostructures. J Photoch Photobio A, 2017, 349(1), 73 doi: 10.1016/j.jphotochem.2017.08.058
[103]
Li K, Chai B, Peng T Y, et al. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light. Acs Catal, 2013, 3(2), 170 doi: 10.1021/cs300724r
[104]
Kobosko S M, Jara D H, Kamat P V. AgInS2–ZnS quantum dots: Excited state interactions with TiO2 and photovoltaic performance. ACS Appl Mater Inter, 2017, 9(39), 33379 doi: 10.1021/acsami.6b14604
[105]
Yang Y L, Mao B D, Gong G, et al. In-situ growth of Zn–AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production. Int J Hydrogen Energy, 2019, 44(30), 15882 doi: 10.1016/j.ijhydene.2019.01.102
[106]
Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J Am Chem Soc, 2004, 126(15), 4943 doi: 10.1021/ja0315199
[107]
Lan M, Guo R M, Dou Y B, et al. Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation. Nano Energy, 2017, 33, 238 doi: 10.1016/j.nanoen.2017.01.046
[108]
Iervolino G, Vaiano V, Sannino D, et al. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl Catal B, 2017, 207, 182 doi: 10.1016/j.apcatb.2017.02.008
[109]
Xue F, Chen C, Fu W L, et al. Interfacial and dimensional effects of Pd Co-catalyst for efficient photocatalytic hydrogen generation. J Phys Chem C, 2018, 122(44), 25165 doi: 10.1021/acs.jpcc.8b06943
[110]
Huang J Q, Li G J, Zhou Z F, et al. Efficient photocatalytic hydrogen production over Rh and Nb codoped TiO2 nanorods. Chem Eng J, 2018, 337(1), 282 doi: 10.1016/j.cej.2017.12.088
[111]
Gong G, Liu Y H, Mao B D, et al. Mechanism study on the photocatalytic efficiency enhancement of MoS2 modified Zn–AgIn5S8 quantum dots. Rsc Adv, 2016, 6(101), 99023 doi: 10.1039/C6RA19949F
[112]
Huang T, Chen W, Liu T Y, et al. Hybrid of AgInZnS and MoS2 as efficient visible-light driven photocatalyst for hydrogen production. Int J Hydrogen Energ, 2017, 42(17), 12254 doi: 10.1016/j.ijhydene.2017.03.210
[113]
Zhen W L, Ning X F, Yang B J, et al. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl Catal B, 2018, 221, 243 doi: 10.1016/j.apcatb.2017.09.024
[114]
Daskalaki V M, Antoniadou M, Puma G L, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Energ Environ Sci, 2010, 44(19), 7200 doi: 10.1021/es9038962
[115]
Wang M J, Shen S L, Li L, et al. Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. J Mater Sci, 2017, 52(9), 5155 doi: 10.1007/s10853-017-0752-z
[116]
Zhang J, Chen J W, Luo Y, et al. Sandwich-like electrode with tungsten nitride nanosheets decorated with carbon dots as efficient electrocatalyst for oxygen reduction. Appl Surf Sci, 2019, 466(1), 911 doi: 10.1016/j.apsusc.2018.10.116
[117]
Ding P, Di J, Chen X, et al. S, N codoped graphene quantum dots embedded in (BiO)2CO3: Incorporating enzymatic-like catalysis in photocatalysis. Acs Sustain Chem Eng, 2018, 6(8), 10229 doi: 10.1021/acssuschemeng.8b01552
[118]
Ji M, Liu Y, Di J, et al. N-CQDs accelerating surface charge transfer of Bi4O5I2 hollow nanotubes with broad spectrum photocatalytic activity. Appl Catal B, 2018, 237, 1033 doi: 10.1016/j.apcatb.2018.06.014
[119]
Miao X, Yue X, Ji Z, et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight. Appl Catal B, 2018, 227, 459 doi: 10.1016/j.apcatb.2018.01.057
[120]
Zhou Y Q, Zahran E M, Quiroga B A, et al. Size-dependent photocatalytic activity of carbon dots with surface-state determined photoluminescence. Appl Catal B, 2019, 248, 157 doi: 10.1016/j.apcatb.2019.02.019
[121]
Vaneski A, Schneider J, Susha A S, et al. Colloidal hybrid heterostructures based on II–VI semiconductor nanocrystals for photocatalytic hydrogen generation. J Photoch Photobio C, 2014, 19, 52 doi: 10.1016/j.jphotochemrev.2013.12.001
[122]
Houtepen A J, Hens Z, Owen J S, et al. On the origin of surface traps in colloidal II–VI semiconductor nanocrystals. Chem Mater, 2017, 29(2), 752 doi: 10.1021/acs.chemmater.6b04648
[123]
Ou K L, Fan J C, Chen J K, et al. Hot-injection synthesis of monodispersed Cu2ZnSn(SxSe1– x)4 nanocrystals: Tunable composition and optical properties. J Mater Chem, 2012, 22(29), 14667 doi: 10.1039/c2jm31901b
[124]
Ren H, Wang M, Li Z, et al. Synthesis and characterization of CuZnSe2 nanocrystals in wurtzite, zinc blende, and core–shell polytypes. Chem Mater, 2019, 31(24), 10085 doi: 10.1021/acs.chemmater.9b03063
[125]
Liu W, Li C, Sun X, et al. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement. Nanotechnology, 2017, 28(48), 485705 doi: 10.1088/1361-6528/aa900b
[126]
Wu P, Wu X Y, Li W, et al. Ultra-small amorphous carbon dots: preparation, photoluminescence properties, and their application as TiO2 photosensitizers. J Mater Sci, 2018, 54(7), 5280 doi: 10.1007/s10853-018-3135-1
[127]
Ingole P P. A consolidated account of electrochemical determination of band structure parameters in II–VI semiconductor quantum dots: a tutorial review. Phys Chem Chem Phys, 2019, 21(9), 4695 doi: 10.1039/C8CP06847J
[128]
Miao X, Qu D, Yang D, et al. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv Mater, 2018, 30(1), 1704740 doi: 10.1002/adma.201704740
[129]
Hu S, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem Int Ed Engl, 2015, 54(10), 2970 doi: 10.1002/anie.201411004
[130]
Qi H, Wang S J, Jiang X H, et al. Research progress and challenges of blue light-emitting diodes based on II–VI semiconductor quantum dots. J Mater Chem C, 2020 doi: 10.1039/d0tc02272a
[131]
Du J, Singh R, Fedin I, et al. Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells. Nat Energy, 2020, 5(5), 409 doi: 10.1038/s41560-020-0617-6
[132]
Xu X Y, Bao Z J, Tang W S, et al. Surface states engineering carbon dots as multi-band light active sensitizers for ZnO nanowire array photoanode to boost solar water splitting. Carbon, 2017, 121, 201 doi: 10.1016/j.carbon.2017.05.095
[133]
Yan F, Sun Z, Zhang H, et al. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: A review. Mikrochim Acta, 2019, 186(8), 583 doi: 10.1007/s00604-019-3688-y
[134]
Lee Y S, Bu H B, Taniguchi T, et al. Hydrothermal synthesis of NAC-capped II–VI semiconductor ZnSe quantum dots in acidic condition. Chem Lett, 2016, 45(8), 878 doi: 10.1246/cl.160431
[135]
Ghali M, Rezk A, Eissa A M, et al. Hot-injection synthesis of ultrasmall CuIn3Se5 quantum dots and production of ink-coated films. J Phys Chem Solids, 2020, 146, 109610 doi: 10.1016/j.jpcs.2020.109610
[136]
Shang L, Zhou C, Bian T, et al. Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. J Mater Chem A, 2013, 1(14), 4552 doi: 10.1039/c3ta01685d
[137]
Delfin F A, Bruhl S P, Forsich C, et al. Carbon based DLC films: Influence of the processing parameters on the structure and properties. Materia-Brazil, 2018, 23(2), 1517 doi: 10.1590/s1517-707620180002.0395
[138]
Rigodanza F, Dordevic L, Arcudi F, et al. Customizing the electrochemical properties of carbon nanodots by using quinones in bottom-up synthesis. Angew Chem Int Ed, 2018, 57(18), 5062 doi: 10.1002/anie.201801707
[139]
Agarwal R, Krook N M, Ren M L, et al. Anion exchange in II–VI semiconducting nanostructures via atomic templating. Nano Lett, 2018, 18(3), 1620 doi: 10.1021/acs.nanolett.7b04424
[140]
Ren X Y, Liang W X, Wang P, et al. A new approach in functionalization of carbon nanoparticles for optoelectronically relevant carbon dots and beyond. Carbon, 2019, 141, 553 doi: 10.1016/j.carbon.2018.09.085
[141]
Kumar S, Nann T. Shape control of II–VI semiconductor nanomaterials. Small, 2006, 2(3), 316 doi: 10.1002/smll.200500357
[142]
Xie R G, Rutherford M, Peng X G. Formation of high-quality I−III−VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J Am Chem Soc, 2009, 131(15), 5691 doi: 10.1021/ja9005767
[143]
Du Fosse I, Ten Brinck S, Infante I, et al. Role of surface reduction in the formation of traps in n-doped II–VI semiconductor nanocrystals: How to charge without reducing the surface. Chem Mater, 2019, 31(12), 4575 doi: 10.1021/acs.chemmater.9b01395
[144]
Zhan Y Y, Shao Z B, Jiang T H, et al. Cation exchange synthesis of two-dimensional vertical Cu2S/CdS heterojunctions for photovoltaic device applications. J Mater Chem A, 2020, 8(2), 789 doi: 10.1039/C9TA11304E
[145]
Jain S, Bharti S, Bhullar G K, et al. I–III–VI core/shell QDs: Synthesis, characterizations and applications. J Lumin, 2020, 219, 116912 doi: 10.1016/j.jlumin.2019.116912
[146]
Zhang A, Dong C, Li L, et al. Non-blinking (Zn)CuInS/ZnS quantum dots prepared by in situ interfacial alloying approach. Sci Rep, 2015, 5, 15227 doi: 10.1038/srep15227
[147]
Li L B, Dong T. Photoluminescence tuning in carbon dots: surface passivation or/and functionalization, heteroatom doping. J Mater Chem C, 2018, 6(30), 7944 doi: 10.1039/C7TC05878K
[148]
Hu S, Yang W, Li N, et al. Carbon-dot-based heterojunction for engineering band-edge position and photocatalytic performance. Small, 2018, 14(44), 1803447 doi: 10.1002/smll.201803447
[149]
Yao B W, Huang H, Liu Y, et al. Carbon dots: A small conundrum. Trends Chem, 2019, 1(2), 235 doi: 10.1016/j.trechm.2019.02.003
[150]
Ludmerczki R, Mura S, Carbonaro C M, et al. Carbon dots from citric acid and its intermediates formed by thermal decomposition. Chem-Eur J, 2019, 25(51), 11963 doi: 10.1002/chem.201902497
[151]
Asano H, Tsukuda S, Kita M, et al. Colloidal Zn(Te,Se)/ZnS core/shell quantum dots exhibiting narrow-band and green photoluminescence. ACS Omega, 2018, 3(6), 6703 doi: 10.1021/acsomega.8b00612
[152]
Kameyama T, Sugiura K, Ishigami Y, et al. Rod-shaped Zn–Ag–In–Te nanocrystals with wavelength-tunable band-edge photoluminescence in the near-IR region. J Mater Chem C, 2018, 6(8), 2034 doi: 10.1039/C7TC05624A
[153]
Huang H Y, Cai K B, Chen P W, et al. Engineering ligand–metal charge transfer states in cross-linked gold nanoclusters for greener luminescent solar concentrators with solid-state quantum yields exceeding 50% and low reabsorption losses. J Phys Chem C, 2018, 122(34), 20019 doi: 10.1021/acs.jpcc.8b06212
[154]
Wang C, Chen Y, Hu T, et al. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method. Nanoscale, 2019, 11(24), 11967 doi: 10.1039/C9NR03038G
[155]
Ding H, Wei J S, Zhang P, et al. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small, 2018, 14(22), 1800612 doi: 10.1002/smll.201800612
[156]
Mansur A A P, Mansur H S, Mansur R L, et al. Bioengineered II–VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells. Spectrochim Acta A, 2018, 189(15), 393 doi: 10.1016/j.saa.2017.08.049
[157]
Xia C, Wu W, Yu T, et al. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS2 quantum dots. ACS Nano, 2018, 12(8), 8350 doi: 10.1021/acsnano.8b03641
[158]
Li J Z, Chen J L, Shen Y M, et al. Extinction coefficient per CdE (E = Se or S) unit for zinc-blende CdE nanocrystals. Nano Research, 2018, 11(8), 3991 doi: 10.1007/s12274-018-1981-4
[159]
Hu J H, Song J L Q, Tang Z S, et al. Phospholipid-stabilized CuxAg1− xInSe2 nanocrystals as luminophores: fabrication, optical properties, and biological application. J Mater Chem C, 2020, 8(17), 5821 doi: 10.1039/D0TC00014K
[160]
Lu J, Liu H, Zhang X, et al. One-dimensional nanostructures of II–VI ternary alloys: synthesis, optical properties, and applications. Nanoscale, 2018, 10(37), 17456 doi: 10.1039/C8NR05019H
[161]
Wieliczka B M, Kaledin A L, Buhro W E, et al. Wavefunction engineering in CdSe/PbS core/shell quantum dots. ACS Nano, 2018, 12(6), 5539 doi: 10.1021/acsnano.8b01248
[162]
Wu Y J, Zhang Y, Sui Y R, et al. Bandgap engineering of Cu2InxZn1– xSn(S,Se)4 alloy films for photovoltaic applications. Ceram Int, 2018, 44(2), 1942 doi: 10.1016/j.ceramint.2017.10.137
[163]
Sun J, An L, Xue G, et al. Wavefunction engineering for efficient photoinduced-electron transfer in CuInS2 quantum dot-sensitized solar cells. Nanotechnology, 2020, 31(21), 215408 doi: 10.1088/1361-6528/ab746c
[164]
Chen Y Z, Li W H, Li L, et al. Progress in organic photocatalysts. Rare Met, 2017, 37(1), 1 doi: 10.1007/s12598-017-0953-2
[165]
Liu X, Yan Y, Da Z, et al. Significantly enhanced photocatalytic performance of CdS coupled nanosheets and the mechanism study. Chem Eng J, 2014, 241, 243 doi: 10.1016/j.cej.2013.12.058
[166]
Meinardi F, Mcdaniel H, Carulli F, et al. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat Nanotechnol, 2015, 10(10), 878 doi: 10.1038/nnano.2015.178
[167]
Li J, Liu K, Xue J, et al. CQDs preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J Catal, 2019, 369, 450 doi: 10.1016/j.jcat.2018.11.026
[168]
Mazzio K A, Prasad S K K, Okamoto K, et al. End-functionalized semiconducting polymers as reagents in the synthesis of hybrid II–VI nanoparticles. Langmuir, 2018, 34(33), 9692 doi: 10.1021/acs.langmuir.8b01307
[169]
Meng X B, Sheng J L, Tang H L, et al. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl Catal B, 2019, 244, 340 doi: 10.1016/j.apcatb.2018.11.018
[170]
Di J, Xia J, Huang Y, et al. Constructing carbon quantum dots/Bi2SiO5 ultrathin nanosheets with enhanced photocatalytic activity and mechanism investigation. Chem Eng J, 2016, 302, 334 doi: 10.1016/j.cej.2016.05.009
[171]
Zhukovskyi M, Yashan H, Kuno M. Low-dimensional II–VI semiconductors for photocatalytic hydrogen generation. Res Chem Intermed, 2019, 45(8), 4249 doi: 10.1007/s11164-019-03904-2
[172]
Qin Y, Li H, Lu J, et al. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem Eng J, 2020, 384, 123275 doi: 10.1016/j.cej.2019.123275
[173]
Jiao M, Li Y, Jia Y, et al. Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. J Colloid Interface Sci, 2020, 565, 35 doi: 10.1016/j.jcis.2020.01.006
[174]
Fan F J, Wu L, Yu S H. Energetic I–III–VI2 and I2–II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energ Environ Sci, 2014, 7(1), 190 doi: 10.1039/C3EE41437J
[175]
Ansi V A, Vijisha K R, Muraleedharan K, et al. Fluorescent carbon nanodots as efficient nitro aromatic sensor- analysis based on computational perspectives. Sens Actuators A, 2020, 302(1), 111817 doi: 10.1016/j.sna.2019.111817
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4891 Times PDF downloads: 139 Times Cited by: 0 Times

    History

    Received: 01 August 2020 Revised: 20 August 2020 Online: Accepted Manuscript: 24 August 2020Uncorrected proof: 25 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yanhong Liu, Fenghua Li, Hui Huang, Baodong Mao, Yang Liu, Zhenhui Kang. Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs[J]. Journal of Semiconductors, 2020, 41(9): 091701. doi: 10.1088/1674-4926/41/9/091701 Y H Liu, F H Li, H Huang, B D Mao, Y Liu, Z H Kang, Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs[J]. J. Semicond., 2020, 41(9): 091701. doi: 10.1088/1674-4926/41/9/091701.Export: BibTex EndNote
      Citation:
      Yanhong Liu, Fenghua Li, Hui Huang, Baodong Mao, Yang Liu, Zhenhui Kang. Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs[J]. Journal of Semiconductors, 2020, 41(9): 091701. doi: 10.1088/1674-4926/41/9/091701

      Y H Liu, F H Li, H Huang, B D Mao, Y Liu, Z H Kang, Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs[J]. J. Semicond., 2020, 41(9): 091701. doi: 10.1088/1674-4926/41/9/091701.
      Export: BibTex EndNote

      Optoelectronic and photocatalytic properties of I–III–VI QDs: Bridging between traditional and emerging new QDs

      doi: 10.1088/1674-4926/41/9/091701
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return