ARTICLES

Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology

Peng Wang1, 2, Gaofei Li3, , Miao Wang3, Hong Li3, Jing Zheng3, Liyou Yang3, Yigang Chen1, Dongdong Li2 and Linfeng Lu2,

+ Author Affiliations

 Corresponding author: Gaofei Li, Gaofei.Li@jinergy.com; Linfeng Lu, lulf@sari.ac.cn

PDF

Turn off MathJax

Abstract: Mono-crystalline silicon solar cells with a passivated emitter rear contact (PERC) configuration have attracted extensive attention from both industry and scientific communities. A record efficiency of 24.06% on p-type silicon wafer and mass production efficiency around 22% have been demonstrated, mainly due to its superior rear side passivation. In this work, the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation, quality of silicon wafer and metal electrodes. A rational way to achieve a 24% mass-production efficiency was proposed. Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%, which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell.

Key words: monocrystalline silicon solar cellpassivated emitter rear contactnumerical simulationfree energy loss analysis



[1]
Blakers A W, Wang A, Milne A M, et al. 22.8% efficient silicon solar cell. Appl Phys Lett, 1989, 55(13), 1363 doi: 10.1063/1.101596
[2]
Joonwichien S, Utsunomiya S, Kida Y, et al. Improved rear local contact formation using Al paste containing Si for industrial PERC solar cell. IEEE J Photovolt, 2018, 8(1), 54 doi: 10.1109/JPHOTOV.2017.2767604
[3]
Albadri A M. Characterization of Al2O3 surface passivation of silicon solar cells. TSF, 2014, 562, 451 doi: 10.1016/j.tsf.2014.03.071
[4]
Pawlik M, Vilcot J P, Halbwax M, et al. Electrical and chemical studies on Al2O3 passivation activation process. Energy Procedia, 2014, 60, 85 doi: 10.1016/j.egypro.2014.12.347
[5]
Inns D, Poplavskyy D. Measurement of metal induced recombination in solar cells. IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, 1
[6]
Inns D. Understanding metal induced recombination losses in silicon solar cells with screen printed silver contacts. Energy Procedia, 2016, 98, 23 doi: 10.1016/j.egypro.2016.10.077
[7]
Chen N, Ebong A. Towards 20% efficient industrial Al-BSF silicon solar cell with multiple busbars and fine gridlines. Sol Energy Mater Sol Cells, 2016, 146, 107 doi: 10.1016/j.solmat.2015.11.020
[8]
Urueña A, John J, Eyben P, et al. Studying local aluminum back surface field (Al-BSF) contacts through scanning spreading resistance microscopy (SSRM). 26th European Photovoltaic Solar Energy Conference (EU PVSEC), 2011
[9]
Hallam B, Herguth A, Hamer P, et al. Eliminating light-induced degradation in commercial p-type Czochralski silicon solar cells. Appl Sci, 2018, 8(1), 10 doi: 10.3390/app8010010
[10]
Herguth A, Hahn G. Kinetics of the boron-oxygen related defect in theory and experiment. J Appl Phys, 2010, 108(11), 114509 doi: 10.1063/1.3517155
[11]
Herguth A, Schubert G, Kaes M, et al. Avoiding boron-oxygen related degradation in highly boron doped Cz silicon. 21st European Photovoltaic Solar Energy Conference (EU PVSEC), 2006, 530
[12]
Ye F, Deng W, Guo W, et al. 22.13% efficient industrial p-type mono PERC solar cell. IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, 3360
[13]
Müller M, Fischer G, Bitnar B, et al. Loss analysis of 22% efficient industrial PERC solar cells. Energy Procedia, 2017, 124, 131 doi: 10.1016/j.egypro.2017.09.322
[14]
[15]
Fell A. A free and fast three-dimensional/two-dimensional solar cell simulator featuring conductive boundary and quasi-neutrality approximations. IEEE Trans Electron Devices, 2013, 60(2), 733 doi: 10.1109/TED.2012.2231415
[16]
Del Alamo J A, Swanson R M. The physics and modeling of heavily doped emitters. IEEE Trans Electron Devices, 1984, 31(12), 1878 doi: 10.1109/T-ED.1984.21805
[17]
Swanson R M J S C. Point-contact solar cells: modeling and experiment. Sol Cells, 1986, 17(1), 85 doi: 10.1016/0379-6787(86)90061-X
[18]
Brendel R. Modeling solar cells with the dopant-diffused layers treated as conductive boundaries. Prog Photovolt: Res Appl, 2012, 20(1), 31 doi: 10.1002/pip.954
[19]
Module ray tracer from PV lighthouse, sunsolve. https://www.pvlighthouse.com.au/sunsolve
[20]
Fell A, Mcintosh K R, Altermatt P P, et al. Input parameters for the simulation of silicon solar cells in 2014. IEEE J Photovolt, 2017, 5(4), 1250 doi: 10.1109/JPHOTOV.2015.2430016
[21]
Min B, Müller M, Wagner H, et al. A roadmap toward 24% efficient PERC solar cells in industrial mass production. IEEE J Photovolt, 2017, 7(6), 1541 doi: 10.1109/JPHOTOV.2017.2749007
[22]
Ernst M, Walter D, Fell A, et al. Efficiency potential of p-type Al passivated perc solar cells with locally laser-doped rear contacts. IEEE J Photovolt, 2016, 6(3), 1 doi: 10.1109/JPHOTOV.2016.2551079
[23]
Shockley W. The theory of p−n junctions in semiconductors and p−n junction transistors. Bell Syst Tech J, 1949, 28(3), 435 doi: 10.1002/j.1538-7305.1949.tb03645.x
[24]
Würfel P. Physics of solar cells: from principles to new concepts. Berlin: Wiley-vch, 2005
[25]
Huang H, Modanese C, Sun S, et al. Effective passivation of p+ and n+ emitters using SiO2/Al2O3/SiNx stacks: Surface passivation mechanisms and application to industrial p-PERT bifacial Si solar cells. Sol Energy Mater Sol Cells, 2018, 186, 356 doi: 10.1016/j.solmat.2018.07.007
[26]
Kimmerle A, Rahman M M, Werner S, et al. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces. J Appl Phys, 2016, 119(2), 025706 doi: 10.1063/1.4939960
[27]
Dingemans G, Kessels W. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J Vac Sci Technol A, 2012, 30(4), 040802 doi: 10.1116/1.4728205
[28]
Glunz S W, Feldmann F. SiO2 surface passivation layers–a key technology for silicon solar cells. Sol Energy Mater Sol Cells, 2018, 185, 260 doi: 10.1016/j.solmat.2018.04.029
[29]
Zhuo Z, Sannomiya Y, Kanetani Y, et al. Interface properties of SiOxNy layer on Si prepared by atmospheric-pressure plasma oxidation-nitridation. Nanoscale Res Lett, 2013, 8(1), 201 doi: 10.1186/1556-276X-8-201
[30]
Richter A, Glunz S W, Werner F, et al. Improved quantitative description of Auger recombination in crystalline silicon. Phys Rev B, 2012, 86(16), 4172 doi: 10.1103/PhysRevB.86.165202
[31]
Shockley W, Read W Jr. Statistics of the recombinations of holes and electrons. Phys Rev, 1952, 87(5), 835 doi: 10.1103/PhysRev.87.835
[32]
Hall R. Germanium rectifier characteristics. Phys Rev, 1951, 83(1), 228
[33]
Richter A, Werner F, Cuevas A, et al. Improved parameterization of Auger recombination in silicon. Energy Procedia, 2012, 27(27), 88 doi: 10.1016/j.egypro.2012.07.034
[34]
Walter D C, Lim B, Schmidt J. Realistic efficiency potential of next-generation industrial Czochralski-grown silicon solar cells after deactivation of the boron–oxygen-related defect center. Prog Photovolt: Res Appl, 2016, 24(7), 920 doi: 10.1002/pip.2731
[35]
Schmidt J, Lim B, Walter D, et al. Impurity-related limitations of next-generation industrial silicon solar cells. IEEE J Photovolt, 2013, 3(1), 114 doi: 10.1109/JPHOTOV.2012.2210030
[36]
Wolny F, Weber T, Müller M, et al. Light induced degradation and regeneration of high efficiency Cz PERC cells with varying base resistivity. Energy Procedia, 2013, 38, 523 doi: 10.1016/j.egypro.2013.07.312
[37]
Woehl R, Hörteis M, Glunz S. Analysis of the optical properties of screen-printed and aerosol-printed and plated fingers of silicon solar cells. Adv OptoElectron, 2008, 759340 doi: 10.1155/2008/759340
[38]
Blakers A. Shading losses of solar-cell metal grids. J Appl Phys, 1992, 71(10), 5237 doi: 10.1063/1.350580
[39]
Braun S, Micard G, Hahn G. Solar cell improvement by using a multi busbar design as front electrode. Energy Procedia, 2012, 27(7), 227 doi: 10.1016/j.egypro.2012.07.056
[40]
Walter J, Tranitz M, Volk M, et al. Multi-wire interconnection of busbar-free solar cells. Energy Procedia, 2014, 55, 380 doi: 10.1016/j.egypro.2014.08.109
[41]
Rehman A U, Lee S H. Review of the potential of the Ni/Cu plating technique for crystalline silicon solar cells. Materials, 2014, 7(2), 1318 doi: 10.3390/ma7021318
[42]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034
[43]
Kerr M J, Cuevas A, Campbell P. Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination. Prog Photovolt: Res Appl Math, 2003, 11(2), 97 doi: 10.1002/pip.464
[44]
Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovolt, 2013, 3(4), 1184 doi: 10.1109/JPHOTOV.2013.2270351
Fig. 1.  (Color online) (a) A digital camera image of a PERC solar cell with five busbars from our product line. (b) Schematic illustration of the basic PERC solar cell structure in the simulation.

Fig. 2.  The J–V curve of PERC reference cell and the electrical properties comparison between simulated and practical mass-produced PERC cell.

Fig. 3.  (Color online) The relationship between the saturation current density J0E and sheet resistance of SiOxNy/SiNx[26], SiO2/SiNx[25], SiO2/Al2O3/SiNx[25] and Al2O3/SiNx[25] passivation layers on n+ emitter of PERC solar cell.

Fig. 4.  (Color online) Comparison of (a) simulated efficiency and VOC, (b) simulated JSC and FF of PERC solar cells using different n+ emitter passivation stacked layers.

Fig. 5.  (Color online) Relationship between resistivity and carrier lifetime of silicon wafer under intrinsic limit condition and different BO deactivated processing conditions[2931].

Fig. 6.  (Color online) The electrical performance of PERC solar cells varies with the resistivity of silicon wafers under intrinsic limit and different BO deactivated processing conditions[2931].

Fig. 7.  (Color online) Simulated solar cell of a possible scenario for further PERC cell improvements. In step (1), the star, triangle, circle and rhombus points represent cells with SiO2/SiNx, SiO2/Al2O3/SiNx, SiOxNy/SiNx and Al2O3/SiNx, respectively. In step (2), the star, rhombus and circle points represent carrier lifetimes of 6200, 2500, and 430 μs, respectively. In step (3), the hollow star represents the cell with 12 BB and the solid star represents the cell using 12 BB together with Ni/Cu electrode.

Fig. 8.  (Color online) Sources of the efficiency loss between the simulated PERC solar cell with 24.04% to the limit efficiency of 29%.

Table 1.   Simulation parameters of PERC reference cell.

RegionParameterValue
OpticsUpright pyramids52°, 4 μm height
Incident illuminationAM1.5g (1000 W/m2)
Front passivation layers15 nm SiNx (n = 2.41)/70 nm SiNx (n = 2.09)
n+ emitterSheet resistance120 Ω/□
Junction depth[20]0.36 μm
Non-contacted region J0E[20]80 fA/cm2
Contacted region J0E[20]500 fA/cm2
Contact resistivity[21]2 mΩ·cm2
Selective emitterSheet resistance[21]70 Ω/□
Junction depth[21]0.5 μm
Non-contacted region J0E[20]100 fA/cm2
Contacted region J0E[20]500 fA/cm2
Contact resistivity[21]2 mΩ·cm2
BulkCell thickness180 μm
Resistivity1 Ω·cm
Background lifetime[21]512 μs
BSFSheet resistance[22]30 Ω/□
Junction depth5 μm
Non-contacted region J0E [22]13.1 fA/cm2
Contacted region J0E[22]795 fA/cm2
Contact resistivity[21]5 mΩ·cm2
DownLoad: CSV

Table 2.   Comparison of resistivity and contact resistivity of different metal electrode[21].

MetalResistivity (µΩ·cm)Contact resistivity (mΩ·cm2)
Ag32
Al355
Ni/Cu1.60.1
DownLoad: CSV
[1]
Blakers A W, Wang A, Milne A M, et al. 22.8% efficient silicon solar cell. Appl Phys Lett, 1989, 55(13), 1363 doi: 10.1063/1.101596
[2]
Joonwichien S, Utsunomiya S, Kida Y, et al. Improved rear local contact formation using Al paste containing Si for industrial PERC solar cell. IEEE J Photovolt, 2018, 8(1), 54 doi: 10.1109/JPHOTOV.2017.2767604
[3]
Albadri A M. Characterization of Al2O3 surface passivation of silicon solar cells. TSF, 2014, 562, 451 doi: 10.1016/j.tsf.2014.03.071
[4]
Pawlik M, Vilcot J P, Halbwax M, et al. Electrical and chemical studies on Al2O3 passivation activation process. Energy Procedia, 2014, 60, 85 doi: 10.1016/j.egypro.2014.12.347
[5]
Inns D, Poplavskyy D. Measurement of metal induced recombination in solar cells. IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, 1
[6]
Inns D. Understanding metal induced recombination losses in silicon solar cells with screen printed silver contacts. Energy Procedia, 2016, 98, 23 doi: 10.1016/j.egypro.2016.10.077
[7]
Chen N, Ebong A. Towards 20% efficient industrial Al-BSF silicon solar cell with multiple busbars and fine gridlines. Sol Energy Mater Sol Cells, 2016, 146, 107 doi: 10.1016/j.solmat.2015.11.020
[8]
Urueña A, John J, Eyben P, et al. Studying local aluminum back surface field (Al-BSF) contacts through scanning spreading resistance microscopy (SSRM). 26th European Photovoltaic Solar Energy Conference (EU PVSEC), 2011
[9]
Hallam B, Herguth A, Hamer P, et al. Eliminating light-induced degradation in commercial p-type Czochralski silicon solar cells. Appl Sci, 2018, 8(1), 10 doi: 10.3390/app8010010
[10]
Herguth A, Hahn G. Kinetics of the boron-oxygen related defect in theory and experiment. J Appl Phys, 2010, 108(11), 114509 doi: 10.1063/1.3517155
[11]
Herguth A, Schubert G, Kaes M, et al. Avoiding boron-oxygen related degradation in highly boron doped Cz silicon. 21st European Photovoltaic Solar Energy Conference (EU PVSEC), 2006, 530
[12]
Ye F, Deng W, Guo W, et al. 22.13% efficient industrial p-type mono PERC solar cell. IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, 3360
[13]
Müller M, Fischer G, Bitnar B, et al. Loss analysis of 22% efficient industrial PERC solar cells. Energy Procedia, 2017, 124, 131 doi: 10.1016/j.egypro.2017.09.322
[14]
[15]
Fell A. A free and fast three-dimensional/two-dimensional solar cell simulator featuring conductive boundary and quasi-neutrality approximations. IEEE Trans Electron Devices, 2013, 60(2), 733 doi: 10.1109/TED.2012.2231415
[16]
Del Alamo J A, Swanson R M. The physics and modeling of heavily doped emitters. IEEE Trans Electron Devices, 1984, 31(12), 1878 doi: 10.1109/T-ED.1984.21805
[17]
Swanson R M J S C. Point-contact solar cells: modeling and experiment. Sol Cells, 1986, 17(1), 85 doi: 10.1016/0379-6787(86)90061-X
[18]
Brendel R. Modeling solar cells with the dopant-diffused layers treated as conductive boundaries. Prog Photovolt: Res Appl, 2012, 20(1), 31 doi: 10.1002/pip.954
[19]
Module ray tracer from PV lighthouse, sunsolve. https://www.pvlighthouse.com.au/sunsolve
[20]
Fell A, Mcintosh K R, Altermatt P P, et al. Input parameters for the simulation of silicon solar cells in 2014. IEEE J Photovolt, 2017, 5(4), 1250 doi: 10.1109/JPHOTOV.2015.2430016
[21]
Min B, Müller M, Wagner H, et al. A roadmap toward 24% efficient PERC solar cells in industrial mass production. IEEE J Photovolt, 2017, 7(6), 1541 doi: 10.1109/JPHOTOV.2017.2749007
[22]
Ernst M, Walter D, Fell A, et al. Efficiency potential of p-type Al passivated perc solar cells with locally laser-doped rear contacts. IEEE J Photovolt, 2016, 6(3), 1 doi: 10.1109/JPHOTOV.2016.2551079
[23]
Shockley W. The theory of p−n junctions in semiconductors and p−n junction transistors. Bell Syst Tech J, 1949, 28(3), 435 doi: 10.1002/j.1538-7305.1949.tb03645.x
[24]
Würfel P. Physics of solar cells: from principles to new concepts. Berlin: Wiley-vch, 2005
[25]
Huang H, Modanese C, Sun S, et al. Effective passivation of p+ and n+ emitters using SiO2/Al2O3/SiNx stacks: Surface passivation mechanisms and application to industrial p-PERT bifacial Si solar cells. Sol Energy Mater Sol Cells, 2018, 186, 356 doi: 10.1016/j.solmat.2018.07.007
[26]
Kimmerle A, Rahman M M, Werner S, et al. Precise parameterization of the recombination velocity at passivated phosphorus doped surfaces. J Appl Phys, 2016, 119(2), 025706 doi: 10.1063/1.4939960
[27]
Dingemans G, Kessels W. Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J Vac Sci Technol A, 2012, 30(4), 040802 doi: 10.1116/1.4728205
[28]
Glunz S W, Feldmann F. SiO2 surface passivation layers–a key technology for silicon solar cells. Sol Energy Mater Sol Cells, 2018, 185, 260 doi: 10.1016/j.solmat.2018.04.029
[29]
Zhuo Z, Sannomiya Y, Kanetani Y, et al. Interface properties of SiOxNy layer on Si prepared by atmospheric-pressure plasma oxidation-nitridation. Nanoscale Res Lett, 2013, 8(1), 201 doi: 10.1186/1556-276X-8-201
[30]
Richter A, Glunz S W, Werner F, et al. Improved quantitative description of Auger recombination in crystalline silicon. Phys Rev B, 2012, 86(16), 4172 doi: 10.1103/PhysRevB.86.165202
[31]
Shockley W, Read W Jr. Statistics of the recombinations of holes and electrons. Phys Rev, 1952, 87(5), 835 doi: 10.1103/PhysRev.87.835
[32]
Hall R. Germanium rectifier characteristics. Phys Rev, 1951, 83(1), 228
[33]
Richter A, Werner F, Cuevas A, et al. Improved parameterization of Auger recombination in silicon. Energy Procedia, 2012, 27(27), 88 doi: 10.1016/j.egypro.2012.07.034
[34]
Walter D C, Lim B, Schmidt J. Realistic efficiency potential of next-generation industrial Czochralski-grown silicon solar cells after deactivation of the boron–oxygen-related defect center. Prog Photovolt: Res Appl, 2016, 24(7), 920 doi: 10.1002/pip.2731
[35]
Schmidt J, Lim B, Walter D, et al. Impurity-related limitations of next-generation industrial silicon solar cells. IEEE J Photovolt, 2013, 3(1), 114 doi: 10.1109/JPHOTOV.2012.2210030
[36]
Wolny F, Weber T, Müller M, et al. Light induced degradation and regeneration of high efficiency Cz PERC cells with varying base resistivity. Energy Procedia, 2013, 38, 523 doi: 10.1016/j.egypro.2013.07.312
[37]
Woehl R, Hörteis M, Glunz S. Analysis of the optical properties of screen-printed and aerosol-printed and plated fingers of silicon solar cells. Adv OptoElectron, 2008, 759340 doi: 10.1155/2008/759340
[38]
Blakers A. Shading losses of solar-cell metal grids. J Appl Phys, 1992, 71(10), 5237 doi: 10.1063/1.350580
[39]
Braun S, Micard G, Hahn G. Solar cell improvement by using a multi busbar design as front electrode. Energy Procedia, 2012, 27(7), 227 doi: 10.1016/j.egypro.2012.07.056
[40]
Walter J, Tranitz M, Volk M, et al. Multi-wire interconnection of busbar-free solar cells. Energy Procedia, 2014, 55, 380 doi: 10.1016/j.egypro.2014.08.109
[41]
Rehman A U, Lee S H. Review of the potential of the Ni/Cu plating technique for crystalline silicon solar cells. Materials, 2014, 7(2), 1318 doi: 10.3390/ma7021318
[42]
Shockley W, Queisser H J. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3), 510 doi: 10.1063/1.1736034
[43]
Kerr M J, Cuevas A, Campbell P. Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination. Prog Photovolt: Res Appl Math, 2003, 11(2), 97 doi: 10.1002/pip.464
[44]
Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovolt, 2013, 3(4), 1184 doi: 10.1109/JPHOTOV.2013.2270351
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4587 Times PDF downloads: 153 Times Cited by: 0 Times

    History

    Received: 10 October 2019 Revised: 21 November 2019 Online: Accepted Manuscript: 06 February 2020Uncorrected proof: 13 February 2020Published: 01 June 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Peng Wang, Gaofei Li, Miao Wang, Hong Li, Jing Zheng, Liyou Yang, Yigang Chen, Dongdong Li, Linfeng Lu. Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology[J]. Journal of Semiconductors, 2020, 41(6): 062701. doi: 10.1088/1674-4926/41/6/062701 P Wang, G F Li, M Wang, H Li, J Zheng, L Y Yang, Y G Chen, D D Li, L F Lu, Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology[J]. J. Semicond., 2020, 41(6): 062701. doi: 10.1088/1674-4926/41/6/062701.Export: BibTex EndNote
      Citation:
      Peng Wang, Gaofei Li, Miao Wang, Hong Li, Jing Zheng, Liyou Yang, Yigang Chen, Dongdong Li, Linfeng Lu. Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology[J]. Journal of Semiconductors, 2020, 41(6): 062701. doi: 10.1088/1674-4926/41/6/062701

      P Wang, G F Li, M Wang, H Li, J Zheng, L Y Yang, Y G Chen, D D Li, L F Lu, Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology[J]. J. Semicond., 2020, 41(6): 062701. doi: 10.1088/1674-4926/41/6/062701.
      Export: BibTex EndNote

      Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology

      doi: 10.1088/1674-4926/41/6/062701
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return