SEMICONDUCTOR PHYSICS

Thermoelectric properties of Al-doped ZnO: experiment and simulation

S. Jantrasee1, P. Moontragoon2 and S. Pinitsoontorn2

+ Author Affiliations

 Corresponding author: S. Jantrasee, jorsak7@hotmail.com

PDF

Abstract: Advancement in doping other elements, such as Ce, Dy, Ni, Sb, In and Ga in ZnO[1], have stimulated great interest for high-temperature thermoelectric application. In this work, the effects of Al-doping in a ZnO system on the electronic structure and thermoelectric properties are presented, by experiment and calculation.Nanosized powders of Zn1-xAlxO (x=0, 0.01, 0.02, 0.03 and 0.06) were synthesized by hydrothermal method. From XRD results, all samples contain ZnO as the main phase and ZnAl2O4 (spinel phase) peaks were visible when Al additive concentrations were just 6 at%. The shape of the samples changed and the particle size decreased with increasing Al concentration. Seebeck coefficients, on the other hand, did not vary significantly. They were negative and the absolute values increased with temperature. However, the electrical resistivity decreased significantly for higher Al content.The electronic structure calculations were carried out using the open-source software package ABINIT[2], which is based on DFT. The energy band gap, density of states of Al-doped ZnO were investigated using PAW pseudopotential method within the LDA+U. The calculated density of states was then used in combination with the Boltzmann transport equation[3] to calculate the thermoelectric parameters of Al-doped ZnO. The electronic band structures showed that the position of the Fermi level of the doped sample was shifted upwards in comparison to the undoped one. After doping Al in ZnO, the energy band gap was decreased, Seebeck coefficient and electrical conductivity were increased.Finally, the calculated results were compared with the experimental results. The good agreement of thermoelectric properties between the calculation and the experimental results were obtained.

Key words: ZnOdopingthermoelectric property



[1]
Rowe D M. Thermoelectrics handbook:macro to nano. CRC Press, 2006
[2]
Gonze X, Beuken J M, Caracas R, et al. First-principles computation of material properties:the ABINIT software project. Comput Mater Sci, 2002, 25(3):478 doi: 10.1016/S0927-0256(02)00325-7
[3]
Madsen G K H, Singh D J, BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun, 2006, 175:67 doi: 10.1016/j.cpc.2006.03.007
[4]
Dzurilla D E. How future renewable energy professionals are breaking into the industry in renewable energy world. New Hamphire, 2008 http://www.renewableenergyworld.com/articles/2008/02/how-future-renewable-energy-professionals-are-breaking-into-the-industry-51631.html
[5]
Park K, Hwang H K, Seo J W, et al. Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation. Energy, 2013, 54:139 doi: 10.1016/j.energy.2013.03.023
[6]
Colder H, Guilmeau E, Harnois C, et al. Preparation of Ni-doped ZnO ceramics for thermoelectric applications. J Euro Ceram Soc, 2011, 31:2957 doi: 10.1016/j.jeurceramsoc.2011.07.006
[7]
Park K, Seong J K, Nahm S. Improvement of thermoelectric properties with the addition of Sb to ZnO. J Alloys Compd, 2008, 455:331 doi: 10.1016/j.jallcom.2007.01.080
[8]
Takemoto H, Kawakami H, Saito M, et al. Thermoelectric properties of Zn1-(x+y)GaxInyO (x+y=0.007) system. Procedia Engineering, 2012, 36:434
[9]
Ohtaki M, Tsubota T, Eguchi K, et al. High-temperature thermoelectric properties of (Zn1-xAlx)O. Jpn Appl Phys, 1996, 79(3):1816 doi: 10.1063/1.360976
[10]
Ohtaki M, Araki K, Yamamoto K. High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater, 2009, 38(7):1234 doi: 10.1007/s11664-009-0816-1
[11]
Özgür Ü, Alivov Y, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98:041301 doi: 10.1063/1.1992666
[12]
Jantrasee S, Pinitsoontorn S, Moontragoon P. First-principles study of the electronic structure and thermoelectric properties of Al-doped ZnO. J Electron Mater, 2014, 43(6):1689 doi: 10.1007/s11664-013-2834-2
[13]
Branson D L. Kinetics and mechanism of reaction between ZnO and Al2O3. J Am Ceram Soc, 1965, 48:591 doi: 10.1111/jace.1965.48.issue-11
[14]
Shirouzu K, Ohkusa T, Hotta M, et al. Distribution and solubility limit of Al in Al2O3 doped ZnO sintered body. J Ceram Soc Japan, 2007, 115:254 doi: 10.2109/jcersj.115.254
[15]
Zhang Z, Mu J. Hydrothermal synthesis of ZnO nanobundles controlled by PEO-PPO-PEO blocks. J Colloid Interface Sci, 2007, 307:79 doi: 10.1016/j.jcis.2006.10.035
[16]
Bouloudenine M, Viart N, Colis S, et al. Bulk Zn1-xCoxO magnetic semiconductors prepared by hydrothermal technique. Chem Phys Lett, 2004, 397:73 doi: 10.1016/j.cplett.2004.08.064
[17]
Srikant V, Clarke D. On the optical band gap of zinc oxide. J Appl Phys, 1998, 83:5447 doi: 10.1063/1.367375
[18]
Mondrate E A, Copa V, Tuico A, et al. Al-doped ZnO and N-doped CuxO thermoelectric thin films for self-powering integrated devices. Mater Sci Semicond Process, 2016, 45:27 doi: 10.1016/j.mssp.2016.01.013
[19]
Bahadur N, Srivastava A K, Kuma S, et al. Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films, 2010, 518:5257 doi: 10.1016/j.tsf.2010.04.113
[20]
Katsuyama S, Takagi Y, Ito M, et al. Thermoelectric properties of (Zn1-yMgy)1-xAlxO ceramics prepared by the polymerized complex method. J Appl Phys, 2002, 92(3):1391 doi: 10.1063/1.1489091
[21]
Zhou X H, Hu Q H, Fu Y. First-principle LDA+U studies of In-doped ZnO transparent conductive oxide. J Appl Phys, 2008, 104:063703 doi: 10.1063/1.2978324
[22]
Qu X, Lu S, Lia D, et al. First-principles study of the electronic structure of Al and Sn co-doping ZnO system. Mater Sci Semicond Process, 2013, 16:1057 doi: 10.1016/j.mssp.2013.04.002
[23]
Tritt T M, Subramanian M A. Thermoelectric materials, phenomena, and applications:a bird's eye view. MRS Bulletin, 2006, 31:188 doi: 10.1557/mrs2006.44
Fig. 1.  XRD patterns of ZnO and various Al-doped ZnO.

Fig. 2.  The particle size and $c/a$ ratio of ZnO and various Al-doped ZnO.

Fig. 3.  SEM images of ZnO,1%,2%,3% and 6% Al-doped ZnO at magnitude of 500 × and 3,000 × ,respectively.

Fig. 4.  (Color online) The optical band gap of ZnO and Al-doped ZnO.

Fig. 5.  The Seebeck coefficient of ZnO and various Al-doped ZnO.

Fig. 6.  The electrical conductivity ( $\sigma )$ of ZnO and Al-doped ZnO.

Fig. 7.  The power factor of ZnO and various Al-doped ZnO.

Fig. 8.  The thermal conductivity of pure ZnO and Al-doped ZnO.

Fig. 9.  The dimensionless figure of merit ZT of ZnO and Al-doped ZnO.

Fig. 10.  (Color online) Total density of states (DOS) of ZnO and Al-doped ZnO.

Fig. 11.  Partial density of states of Al-doped ZnO (Zn $_{\mathrm{0.94}}$ Al $_{\mathrm{0.06}}$ O): (a) Zn,(b) O,and (c) Al.

Fig. 12.  Thermoelectric properties of Al-doped ZnO: (a) Seebeck coefficient,(b) electrical conductivity,and (c) electric thermal conductivity.

Table 1.   Variation of the particle size,lattice parameter and c /a lattice ratio shown as a function of Al additive concentration.

[1]
Rowe D M. Thermoelectrics handbook:macro to nano. CRC Press, 2006
[2]
Gonze X, Beuken J M, Caracas R, et al. First-principles computation of material properties:the ABINIT software project. Comput Mater Sci, 2002, 25(3):478 doi: 10.1016/S0927-0256(02)00325-7
[3]
Madsen G K H, Singh D J, BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun, 2006, 175:67 doi: 10.1016/j.cpc.2006.03.007
[4]
Dzurilla D E. How future renewable energy professionals are breaking into the industry in renewable energy world. New Hamphire, 2008 http://www.renewableenergyworld.com/articles/2008/02/how-future-renewable-energy-professionals-are-breaking-into-the-industry-51631.html
[5]
Park K, Hwang H K, Seo J W, et al. Enhanced high-temperature thermoelectric properties of Ce- and Dy-doped ZnO for power generation. Energy, 2013, 54:139 doi: 10.1016/j.energy.2013.03.023
[6]
Colder H, Guilmeau E, Harnois C, et al. Preparation of Ni-doped ZnO ceramics for thermoelectric applications. J Euro Ceram Soc, 2011, 31:2957 doi: 10.1016/j.jeurceramsoc.2011.07.006
[7]
Park K, Seong J K, Nahm S. Improvement of thermoelectric properties with the addition of Sb to ZnO. J Alloys Compd, 2008, 455:331 doi: 10.1016/j.jallcom.2007.01.080
[8]
Takemoto H, Kawakami H, Saito M, et al. Thermoelectric properties of Zn1-(x+y)GaxInyO (x+y=0.007) system. Procedia Engineering, 2012, 36:434
[9]
Ohtaki M, Tsubota T, Eguchi K, et al. High-temperature thermoelectric properties of (Zn1-xAlx)O. Jpn Appl Phys, 1996, 79(3):1816 doi: 10.1063/1.360976
[10]
Ohtaki M, Araki K, Yamamoto K. High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater, 2009, 38(7):1234 doi: 10.1007/s11664-009-0816-1
[11]
Özgür Ü, Alivov Y, Liu C, et al. A comprehensive review of ZnO materials and devices. J Appl Phys, 2005, 98:041301 doi: 10.1063/1.1992666
[12]
Jantrasee S, Pinitsoontorn S, Moontragoon P. First-principles study of the electronic structure and thermoelectric properties of Al-doped ZnO. J Electron Mater, 2014, 43(6):1689 doi: 10.1007/s11664-013-2834-2
[13]
Branson D L. Kinetics and mechanism of reaction between ZnO and Al2O3. J Am Ceram Soc, 1965, 48:591 doi: 10.1111/jace.1965.48.issue-11
[14]
Shirouzu K, Ohkusa T, Hotta M, et al. Distribution and solubility limit of Al in Al2O3 doped ZnO sintered body. J Ceram Soc Japan, 2007, 115:254 doi: 10.2109/jcersj.115.254
[15]
Zhang Z, Mu J. Hydrothermal synthesis of ZnO nanobundles controlled by PEO-PPO-PEO blocks. J Colloid Interface Sci, 2007, 307:79 doi: 10.1016/j.jcis.2006.10.035
[16]
Bouloudenine M, Viart N, Colis S, et al. Bulk Zn1-xCoxO magnetic semiconductors prepared by hydrothermal technique. Chem Phys Lett, 2004, 397:73 doi: 10.1016/j.cplett.2004.08.064
[17]
Srikant V, Clarke D. On the optical band gap of zinc oxide. J Appl Phys, 1998, 83:5447 doi: 10.1063/1.367375
[18]
Mondrate E A, Copa V, Tuico A, et al. Al-doped ZnO and N-doped CuxO thermoelectric thin films for self-powering integrated devices. Mater Sci Semicond Process, 2016, 45:27 doi: 10.1016/j.mssp.2016.01.013
[19]
Bahadur N, Srivastava A K, Kuma S, et al. Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films, 2010, 518:5257 doi: 10.1016/j.tsf.2010.04.113
[20]
Katsuyama S, Takagi Y, Ito M, et al. Thermoelectric properties of (Zn1-yMgy)1-xAlxO ceramics prepared by the polymerized complex method. J Appl Phys, 2002, 92(3):1391 doi: 10.1063/1.1489091
[21]
Zhou X H, Hu Q H, Fu Y. First-principle LDA+U studies of In-doped ZnO transparent conductive oxide. J Appl Phys, 2008, 104:063703 doi: 10.1063/1.2978324
[22]
Qu X, Lu S, Lia D, et al. First-principles study of the electronic structure of Al and Sn co-doping ZnO system. Mater Sci Semicond Process, 2013, 16:1057 doi: 10.1016/j.mssp.2013.04.002
[23]
Tritt T M, Subramanian M A. Thermoelectric materials, phenomena, and applications:a bird's eye view. MRS Bulletin, 2006, 31:188 doi: 10.1557/mrs2006.44
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3090 Times PDF downloads: 49 Times Cited by: 0 Times

    History

    Received: 04 March 2016 Revised: 11 May 2016 Online: Published: 01 September 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      S. Jantrasee, P. Moontragoon, S. Pinitsoontorn. Thermoelectric properties of Al-doped ZnO: experiment and simulation[J]. Journal of Semiconductors, 2016, 37(9): 092002. doi: 10.1088/1674-4926/37/9/092002 S. Jantrasee, P. Moontragoon, S. Pinitsoontorn. Thermoelectric properties of Al-doped ZnO: experiment and simulation[J]. J. Semicond., 2016, 37(9): 092002. doi: 10.1088/1674-4926/37/9/092002.Export: BibTex EndNote
      Citation:
      S. Jantrasee, P. Moontragoon, S. Pinitsoontorn. Thermoelectric properties of Al-doped ZnO: experiment and simulation[J]. Journal of Semiconductors, 2016, 37(9): 092002. doi: 10.1088/1674-4926/37/9/092002

      S. Jantrasee, P. Moontragoon, S. Pinitsoontorn. Thermoelectric properties of Al-doped ZnO: experiment and simulation[J]. J. Semicond., 2016, 37(9): 092002. doi: 10.1088/1674-4926/37/9/092002.
      Export: BibTex EndNote

      Thermoelectric properties of Al-doped ZnO: experiment and simulation

      doi: 10.1088/1674-4926/37/9/092002
      More Information
      • Corresponding author: S. Jantrasee, jorsak7@hotmail.com
      • Received Date: 2016-03-04
      • Revised Date: 2016-05-11
      • Published Date: 2016-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return