SHORT COMMUNICATION

D18, an eximious solar polymer!

Ke Jin, Zuo Xiao and Liming Ding

+ Author Affiliations

 Corresponding author: Z Xiao, xiaoz@nanoctr.cn; L Ding, ding@nanoctr.cn

PDF

Turn off MathJax



[1]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[2]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci Sin Chim, 2020, 50, 437 doi: 10.1360/SSC-2020-0018
[3]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[4]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[5]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[6]
Duan C, Ding L. The new era for organic solar cells: small molecular donors. Sci Bull, 2020, 65, 1597 doi: 10.1016/j.scib.2020.05.019
[7]
Zhang Y, Duan C, Ding L. Indoor organic photovoltaics. Sci Bull, 2020, 65, 2040 doi: 10.1016/j.scib.2020.08.030
[8]
Wu J, Cheng S, Cheng Y, et al. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem Soc Rev, 2015, 44, 1113 doi: 10.1039/C4CS00250D
[9]
Müllen K, Pisula W. Donor-acceptor polymers. J Am Chem Soc, 2015, 137, 9503 doi: 10.1021/jacs.5b07015
[10]
Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45, 607 doi: 10.1021/ma201648t
[11]
Yu G, Gao J, Hummelen J C. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270, 1789 doi: 10.1126/science.270.5243.1789
[12]
Bin H, Gao L, Zhang Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun, 2016, 7, 13651 doi: 10.1038/ncomms13651
[13]
Sun C, Pan F, Bin H, et al. A low cost and high performance polymer donor material for polymer solar cells. Nat Commun, 2018, 9, 743 doi: 10.1038/s41467-018-03207-x
[14]
Qian D, Ye L, Zhang M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules, 2012, 45, 9611 doi: 10.1021/ma301900h
[15]
Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater, 2015, 27, 4655 doi: 10.1002/adma.201502110
[16]
Zhang S, Qin Y, Zhu J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater, 2018, 30, 1800868 doi: 10.1002/adma.201800868
[17]
Huo L, Liu T, Sun X, et al. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv Mater, 2015, 27, 2938 doi: 10.1002/adma.201500647
[18]
Liu T, Huo L, Chandrabose S, et al. Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv Mater, 2018, 30, 1707353 doi: 10.1002/adma.201707353
[19]
Liang Y, Xu Z, Xia J, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22, E135 doi: 10.1002/adma.200903528
[20]
Liao S H, Jhuo H J, Cheng Y S, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater, 2013, 25, 4766 doi: 10.1002/adma.201301476
[21]
Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J Am Chem Soc, 2011, 133, 4625 doi: 10.1021/ja1112595
[22]
Hendriks K H, Heintges G H L, Gevaerts V S, et al. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem, 2013, 125, 8499 doi: 10.1002/ange.201302319
[23]
Zhao J, Li Y, Yang G, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy, 2016, 1, 15027 doi: 10.1038/nenergy.2015.27
[24]
Jin Y, Chen Z, Dong S, et al. A novel naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv Mater, 2016, 28, 9811 doi: 10.1002/adma.201603178
[25]
Fan B, Zhang D, Li M, et al. Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem, 2019, 62, 746 doi: 10.1007/s11426-019-9457-5
[26]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[27]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[28]
Cao J, Zhang W, Xiao Z, et al. Synthesis and photovoltaic properties of low band gap polymers containing benzo[1,2-b:4,5-c′]dithiophene-4,8-dione. Macromolecules, 2012, 45, 1710 doi: 10.1021/ma202578y
[29]
Zhang W, Cao J, Liu Y, et al. Using cyclopenta[2,1-b:3,4-c']dithiophene-4-one as a building block for low-bandgap conjugated copolymers applied in solar cells. Macromol Rapid Commun, 2012, 33, 1574 doi: 10.1002/marc.201200311
[30]
Cao J, Liao Q, Du X, et al. A pentacyclic aromatic lactam building block for efficient polymer solar cells. Energy Environ Sci, 2013, 6, 3224 doi: 10.1039/c3ee41948g
[31]
Cao J, Zuo C, Du B, et al. Hexacyclic lactam building blocks for highly efficient polymer solar cells. Chem Commun, 2015, 51, 12122 doi: 10.1039/C5CC04375A
[32]
Cao J, Qian L, Lu F, et al. A lactam building block for efficient polymer solar cells. Chem Commun, 2015, 51, 11830 doi: 10.1039/C5CC03620H
[33]
An M, Xie F, Geng X, et al. A high-performance D-A copolymer based on dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one unit compatible with fullerene and nonfullerene acceptors in solar cells. Adv Energy Mater, 2017, 7, 1602509 doi: 10.1002/aenm.201602509
[34]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[35]
Li D, Xiao Z, Wang S, et al. A thieno[3,2-c]isoquinolin-5(4H)-one building block for efficient thick-film solar cells. Adv Energy Mater, 2018, 8, 1800397 doi: 10.1002/aenm.201800397
[36]
Gao Y, Li D, Xiao Z, et al. High-performance wide-bandgap copolymers with dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one units. Mater Chem Front, 2019, 3, 399 doi: 10.1039/C8QM00604K
[37]
Li S, Ye L, Zhao W, et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater, 2016, 28, 9423 doi: 10.1002/adma.201602776
[38]
Liu J, Liu L, Zuo C, et al. 5H-dithieno[3,2-b:2′,3′-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 2019, 64, 1655 doi: 10.1016/j.scib.2019.09.001
[39]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[40]
Xiong J, Jin K, Jiang Y, et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 2019, 64, 1573 doi: 10.1016/j.scib.2019.10.002
[41]
Jiang K, Wei Q, Lai J Y L, et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 2019, 3, 3020 doi: 10.1016/j.joule.2019.09.010
[42]
Li W, Liu Q, Jin K, et al. Fused-ring phenazine building blocks for efficient copolymer donors. Mater Chem Front, 2020, 4, 1454 doi: 10.1039/D0QM00080A
[43]
Xiong J, Xu J, Jiang Y, et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 2020, 65, 1792 doi: 10.1016/j.scib.2020.07.018
[44]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[45]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
Fig. 1.  (Color online) Polymer donors with fused-ring acceptor units developed in Ding’s lab.

Fig. 2.  NIM (Beijing) report for D18:N3 solar cells.

[1]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
[2]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci Sin Chim, 2020, 50, 437 doi: 10.1360/SSC-2020-0018
[3]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[4]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[5]
Duan C, Ding L. The new era for organic solar cells: polymer acceptors. Sci Bull, 2020, 65, 1508 doi: 10.1016/j.scib.2020.05.023
[6]
Duan C, Ding L. The new era for organic solar cells: small molecular donors. Sci Bull, 2020, 65, 1597 doi: 10.1016/j.scib.2020.05.019
[7]
Zhang Y, Duan C, Ding L. Indoor organic photovoltaics. Sci Bull, 2020, 65, 2040 doi: 10.1016/j.scib.2020.08.030
[8]
Wu J, Cheng S, Cheng Y, et al. Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem Soc Rev, 2015, 44, 1113 doi: 10.1039/C4CS00250D
[9]
Müllen K, Pisula W. Donor-acceptor polymers. J Am Chem Soc, 2015, 137, 9503 doi: 10.1021/jacs.5b07015
[10]
Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules, 2012, 45, 607 doi: 10.1021/ma201648t
[11]
Yu G, Gao J, Hummelen J C. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270, 1789 doi: 10.1126/science.270.5243.1789
[12]
Bin H, Gao L, Zhang Z G, et al. 11.4% efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun, 2016, 7, 13651 doi: 10.1038/ncomms13651
[13]
Sun C, Pan F, Bin H, et al. A low cost and high performance polymer donor material for polymer solar cells. Nat Commun, 2018, 9, 743 doi: 10.1038/s41467-018-03207-x
[14]
Qian D, Ye L, Zhang M, et al. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules, 2012, 45, 9611 doi: 10.1021/ma301900h
[15]
Zhang M, Guo X, Ma W, et al. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv Mater, 2015, 27, 4655 doi: 10.1002/adma.201502110
[16]
Zhang S, Qin Y, Zhu J, et al. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater, 2018, 30, 1800868 doi: 10.1002/adma.201800868
[17]
Huo L, Liu T, Sun X, et al. Single-junction organic solar cells based on a novel wide-bandgap polymer with efficiency of 9.7%. Adv Mater, 2015, 27, 2938 doi: 10.1002/adma.201500647
[18]
Liu T, Huo L, Chandrabose S, et al. Optimized fibril network morphology by precise side-chain engineering to achieve high-performance bulk-heterojunction organic solar cells. Adv Mater, 2018, 30, 1707353 doi: 10.1002/adma.201707353
[19]
Liang Y, Xu Z, Xia J, et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater, 2010, 22, E135 doi: 10.1002/adma.200903528
[20]
Liao S H, Jhuo H J, Cheng Y S, et al. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater, 2013, 25, 4766 doi: 10.1002/adma.201301476
[21]
Price S C, Stuart A C, Yang L, et al. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells. J Am Chem Soc, 2011, 133, 4625 doi: 10.1021/ja1112595
[22]
Hendriks K H, Heintges G H L, Gevaerts V S, et al. High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem, 2013, 125, 8499 doi: 10.1002/ange.201302319
[23]
Zhao J, Li Y, Yang G, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy, 2016, 1, 15027 doi: 10.1038/nenergy.2015.27
[24]
Jin Y, Chen Z, Dong S, et al. A novel naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv Mater, 2016, 28, 9811 doi: 10.1002/adma.201603178
[25]
Fan B, Zhang D, Li M, et al. Achieving over 16% efficiency for single-junction organic solar cells. Sci China Chem, 2019, 62, 746 doi: 10.1007/s11426-019-9457-5
[26]
Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[27]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[28]
Cao J, Zhang W, Xiao Z, et al. Synthesis and photovoltaic properties of low band gap polymers containing benzo[1,2-b:4,5-c′]dithiophene-4,8-dione. Macromolecules, 2012, 45, 1710 doi: 10.1021/ma202578y
[29]
Zhang W, Cao J, Liu Y, et al. Using cyclopenta[2,1-b:3,4-c']dithiophene-4-one as a building block for low-bandgap conjugated copolymers applied in solar cells. Macromol Rapid Commun, 2012, 33, 1574 doi: 10.1002/marc.201200311
[30]
Cao J, Liao Q, Du X, et al. A pentacyclic aromatic lactam building block for efficient polymer solar cells. Energy Environ Sci, 2013, 6, 3224 doi: 10.1039/c3ee41948g
[31]
Cao J, Zuo C, Du B, et al. Hexacyclic lactam building blocks for highly efficient polymer solar cells. Chem Commun, 2015, 51, 12122 doi: 10.1039/C5CC04375A
[32]
Cao J, Qian L, Lu F, et al. A lactam building block for efficient polymer solar cells. Chem Commun, 2015, 51, 11830 doi: 10.1039/C5CC03620H
[33]
An M, Xie F, Geng X, et al. A high-performance D-A copolymer based on dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one unit compatible with fullerene and nonfullerene acceptors in solar cells. Adv Energy Mater, 2017, 7, 1602509 doi: 10.1002/aenm.201602509
[34]
Lin Y, Wang J, Zhang Z G, et al. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater, 2015, 27, 1170 doi: 10.1002/adma.201404317
[35]
Li D, Xiao Z, Wang S, et al. A thieno[3,2-c]isoquinolin-5(4H)-one building block for efficient thick-film solar cells. Adv Energy Mater, 2018, 8, 1800397 doi: 10.1002/aenm.201800397
[36]
Gao Y, Li D, Xiao Z, et al. High-performance wide-bandgap copolymers with dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one units. Mater Chem Front, 2019, 3, 399 doi: 10.1039/C8QM00604K
[37]
Li S, Ye L, Zhao W, et al. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater, 2016, 28, 9423 doi: 10.1002/adma.201602776
[38]
Liu J, Liu L, Zuo C, et al. 5H-dithieno[3,2-b:2′,3′-d]pyran-5-one unit yields efficient wide-bandgap polymer donors. Sci Bull, 2019, 64, 1655 doi: 10.1016/j.scib.2019.09.001
[39]
Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004
[40]
Xiong J, Jin K, Jiang Y, et al. Thiolactone copolymer donor gifts organic solar cells a 16.72% efficiency. Sci Bull, 2019, 64, 1573 doi: 10.1016/j.scib.2019.10.002
[41]
Jiang K, Wei Q, Lai J Y L, et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule, 2019, 3, 3020 doi: 10.1016/j.joule.2019.09.010
[42]
Li W, Liu Q, Jin K, et al. Fused-ring phenazine building blocks for efficient copolymer donors. Mater Chem Front, 2020, 4, 1454 doi: 10.1039/D0QM00080A
[43]
Xiong J, Xu J, Jiang Y, et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 2020, 65, 1792 doi: 10.1016/j.scib.2020.07.018
[44]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[45]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027

20120028suppl.pdf

  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5783 Times PDF downloads: 246 Times Cited by: 0 Times

    History

    Received: 26 December 2020 Revised: Online: Accepted Manuscript: 26 December 2020Uncorrected proof: 28 December 2020Published: 09 January 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ke Jin, Zuo Xiao, Liming Ding. D18, an eximious solar polymer![J]. Journal of Semiconductors, 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502 K Jin, Z Xiao, L M Ding, D18, an eximious solar polymer![J]. J. Semicond., 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502.Export: BibTex EndNote
      Citation:
      Ke Jin, Zuo Xiao, Liming Ding. D18, an eximious solar polymer![J]. Journal of Semiconductors, 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502

      K Jin, Z Xiao, L M Ding, D18, an eximious solar polymer![J]. J. Semicond., 2021, 42(1): 010502. doi: 10.1088/1674-4926/42/1/010502.
      Export: BibTex EndNote

      D18, an eximious solar polymer!

      doi: 10.1088/1674-4926/42/1/010502
      More Information
      • Author Bio:

        Ke Jin got his MS degree from Wuhan Institute of Technology in 2019. Now he is a research assistant in Liming Ding Group at National Center for Nanoscience and Technology. His current research focuses on organic solar cells

        Zuo Xiao got his BS and PhD degrees from Peking University under the supervision of Prof. Liangbing Gan. He did postdoctoral research in Eiichi Nakamura Lab at the University of Tokyo. In March 2011, he joined Liming Ding Group at National Center for Nanoscience and Technology as an associate professor. In April 2020, he was promoted to be a full professor. His current research focuses on organic solar cells

        Liming Ding got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Inganäs Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on functional materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editors for Science Bulletin and Journal of Semiconductors

      • Corresponding author: Z Xiao, xiaoz@nanoctr.cn; L Ding, ding@nanoctr.cn
      • Received Date: 2020-12-26
      • Published Date: 2021-01-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return