SEMICONDUCTOR DEVICES

The investigation of the zero temperature coefficient point of power MOSFET

Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She and Xuesong Xie

+ Author Affiliations

 Corresponding author: Xiaoling Zhang, Email: zhangxiaoling@bjut.edu.cn

PDF

Abstract: The paper investigates the zero temperature coefficient (ZTC) point of power MOSFET, based on the output characteristic of power MOSFET, the temperature coefficient of threshold voltage and the carrier mobility. It is found that the gate voltage has a big effect on the ZTC point. The result indicates that there are three types of temperature coefficient under different gate voltage. When the gate voltage is near the threshold voltage, both the linear region and saturation region shows a large positive temperature coefficient. With the increase of gate voltage, the temperature coefficient of the linear region changes from positive to negative, when the saturation region still remains positive, giving rise to the ZTC point. When the gate voltage is high enough, the negative temperature coefficient is present on both the linear and saturation region, resulting in no ZTC point. According to the experimental result, the change of ZTC point as a function of temperature is larger when the gate voltage is higher. The carrier mobility is also discussed, displaying a positive temperature coefficient at low gate voltage due to the free charge screen effect.

Key words: power MOSFETZTCthreshold voltagemobility



[1]
Wang Cailin, Sun Cheng. Analysis of high characteristics and SOA of power MOSFET. Power Electronics, 2008, 42(12):49
[2]
Shoucair F S. Analytical and experiment methods for zerotemperature-coefficient biasing of MOS transistor. Electron Lett, 1989, 25(17):1196
[3]
Ye Runtao, He Qixin, Xu Jiaquan. Temperature effect of MOS power transistor characteristics. Research & Progress of SSE, 1987, 7(1):57
[4]
Groesenken G, Collinge J P, Maes H E, et al. Temperature dependence of threshold voltage in thin-film SOI MOSFET's. IEEE Electron Device Lett, 1990, 11:329
[5]
Yao Jin, Zhang Min, Shen Keqiang. Temperature characteristics model of threshold voltage in small size VDMOS. Chinese Journal of Electron Devices, 2009, 32(1):89
[6]
Tang Junxiong, Tang Minghua, Yang Feng, et al. A temperaturedependent model for threshold voltage and potential distribution of fully depleted SOI MOSFETs. Journal of Semiconductors, 2008, 29(1):45
[7]
Kenneth C, Huang J H, Jon D, et al. A MOSFET electron mobility model of wide temperature range (77-400 K) for IC simulation. Semicond Sci Technol, 1997, 12:355
[8]
Chen K, Wann H C, Jon D, et al. MOSFET carrier mobility based on gate oxide thickness, threshold and gate voltage. Solid-State Electron, 1996, 39(10):1515
[9]
Jayant Baliga B (translated by Han Z S, Lu j, Song L M, et al). Fundamentals of power semiconductor devices. Beijing:Publishing House of Electronics Industry, 2013
[10]
Ren Shangqing, Yang Hong, Tang Bo, et al. Characterization of positive bias temperature instability of NMOSFET with highk/metal gate last process. Journal of Semiconductors, 2015, 36(1):014007
[11]
Donald D, Matthias S, Stefan D, et al. On the origin of thermal runway in a trench power MOSFET. IEEE Trans Electron Devices, 2011, 58(10):3477
[12]
Vinayak H, Maryam S B. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient. Journal of Semiconductors, 2015, 36(8):085001
[13]
Giuseppe C. How the power MOSFET inversion layer carriers' mobility and its thermal gradient affects the TC. IEEE International Symposium on Industrial Electronics, 2007:1009
Fig. 1.  (Color online) The simulation result of Equation (6).

Fig. 2.  The on-state model of power MOSFET with series resistance.

Fig. 3.  (Color online) Output characteristic at Vgs = 3.6 V.

Fig. 4.  (Color online) Output characteristic at Vgs = D 4.6 V.

Fig. 5.  (Color online) Output characteristic at Vgs = D 5.6 V.

Fig. 6.  (Color online) Output characteristic at Vgs = D 8.1 V.

Fig. 7.  (Color online) Trend of electron mobility versus Vgs at different temperature.

Table 1.   Measurement of the threshold voltage at different temperature.

T (℃)2575100125150175
Vth (V)3.132.852.662.462.242.04
S1 (V)0.0730.0490.0460.0380.0370.016
DownLoad: CSV

Table 2.   The ratio of saturation drain current at different temperature.

Vgs (V)3.64.65.68.1
$\frac{{{I}_{d,SAT}}\left( 175℃ \right)}{{{I}_{d,SAT}}\left( 25℃ \right)}$ 351.711.090.69
S25.30.410.070.04
DownLoad: CSV
[1]
Wang Cailin, Sun Cheng. Analysis of high characteristics and SOA of power MOSFET. Power Electronics, 2008, 42(12):49
[2]
Shoucair F S. Analytical and experiment methods for zerotemperature-coefficient biasing of MOS transistor. Electron Lett, 1989, 25(17):1196
[3]
Ye Runtao, He Qixin, Xu Jiaquan. Temperature effect of MOS power transistor characteristics. Research & Progress of SSE, 1987, 7(1):57
[4]
Groesenken G, Collinge J P, Maes H E, et al. Temperature dependence of threshold voltage in thin-film SOI MOSFET's. IEEE Electron Device Lett, 1990, 11:329
[5]
Yao Jin, Zhang Min, Shen Keqiang. Temperature characteristics model of threshold voltage in small size VDMOS. Chinese Journal of Electron Devices, 2009, 32(1):89
[6]
Tang Junxiong, Tang Minghua, Yang Feng, et al. A temperaturedependent model for threshold voltage and potential distribution of fully depleted SOI MOSFETs. Journal of Semiconductors, 2008, 29(1):45
[7]
Kenneth C, Huang J H, Jon D, et al. A MOSFET electron mobility model of wide temperature range (77-400 K) for IC simulation. Semicond Sci Technol, 1997, 12:355
[8]
Chen K, Wann H C, Jon D, et al. MOSFET carrier mobility based on gate oxide thickness, threshold and gate voltage. Solid-State Electron, 1996, 39(10):1515
[9]
Jayant Baliga B (translated by Han Z S, Lu j, Song L M, et al). Fundamentals of power semiconductor devices. Beijing:Publishing House of Electronics Industry, 2013
[10]
Ren Shangqing, Yang Hong, Tang Bo, et al. Characterization of positive bias temperature instability of NMOSFET with highk/metal gate last process. Journal of Semiconductors, 2015, 36(1):014007
[11]
Donald D, Matthias S, Stefan D, et al. On the origin of thermal runway in a trench power MOSFET. IEEE Trans Electron Devices, 2011, 58(10):3477
[12]
Vinayak H, Maryam S B. An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient. Journal of Semiconductors, 2015, 36(8):085001
[13]
Giuseppe C. How the power MOSFET inversion layer carriers' mobility and its thermal gradient affects the TC. IEEE International Symposium on Industrial Electronics, 2007:1009
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4039 Times PDF downloads: 61 Times Cited by: 0 Times

    History

    Received: 13 August 2015 Revised: 28 December 2015 Online: Published: 01 June 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She, Xuesong Xie. The investigation of the zero temperature coefficient point of power MOSFET[J]. Journal of Semiconductors, 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011 B W Zhang, X L Zhang, W W Xiong, S J She, X S Xie. The investigation of the zero temperature coefficient point of power MOSFET[J]. J. Semicond., 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011.Export: BibTex EndNote
      Citation:
      Bowen Zhang, Xiaoling Zhang, Wenwen Xiong, Shuojie She, Xuesong Xie. The investigation of the zero temperature coefficient point of power MOSFET[J]. Journal of Semiconductors, 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011

      B W Zhang, X L Zhang, W W Xiong, S J She, X S Xie. The investigation of the zero temperature coefficient point of power MOSFET[J]. J. Semicond., 2016, 37(6): 064011. doi: 10.1088/1674-4926/37/6/064011.
      Export: BibTex EndNote

      The investigation of the zero temperature coefficient point of power MOSFET

      doi: 10.1088/1674-4926/37/6/064011
      More Information
      • Corresponding author: Email: zhangxiaoling@bjut.edu.cn
      • Received Date: 2015-08-13
      • Revised Date: 2015-12-28
      • Published Date: 2016-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return