ARTICLES

Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch

Lin Luo, Jun Liu, Guofang Wang and Yuxing Wu

+ Author Affiliations

 Corresponding author: Jun Liu, ljun77@hdu.edu.cn

PDF

Turn off MathJax

Abstract: This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode. The extraction method for the proposed model is developed. A 2-gate switch structure is fabricated on a commercial 0.5 μm AlGaAs/GaAs pHEMT technology to verify the proposed model. Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.

Key words: GaAs pHEMTsswitchsmall-signal modelparameter extraction



[1]
Tosaka H, Fujii T, Miyakoshi K, et al. An antenna switch MMIC using E/D mode p-HEMT for GSM/DCS/PCS/WCDMA bands application. IEEE MTT-S International Microwave Symposium Digest, 2003, 519
[2]
Chiu H C, Cheng C S, Wu C S. Enhancement-and depletion-mode InGaP/InGaAs pHEMTs on 6-inch GaAs substrate. 2005 Asia-Pacific Microwave Conference Proceedings, 2005, 4
[3]
Khusro A, Hashmi M S, Ansari A Q, et al. An accurate and simplified small signal parameter extraction method for GaN HEMT. Int J Circuit Theory Appl, 2019, 47(6), 941 doi: 10.1002/cta.2622
[4]
Chen Y, Xu Y, Luo Y, et al. A reliable and efficient small-signal parameter extraction method for GaN HEMTs. Int J Numer Model: Electron Networks, Devices Fields, 2018, e2540 doi: 10.1002/jnm.2540
[5]
Bilevich D V, Popov A A, Salnikov A S, et al. Automatic nonlinear modeling technique for GaAs HEMT. 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2018, 1
[6]
Yu L, Zheng Y K, Zhang S, et al. Small-signal model parameter extraction for AlGaN/GaN HEMT. J Semicond, 2016, 37(3), 034003 doi: 10.1088/1674-4926/37/3/034003
[7]
Gibiino G P, Santarelli A, Filicori F. Charge-conservative GaN HEMT nonlinear modeling from non-isodynamic multi-bias S-parameter measurements. Int J Microwave Wireless Technol, 2019, 11(5/6), 431 doi: 10.1017/S1759078719000059
[8]
Changsi W, Yuehang X, Zhang W, et al. An improved temperature-dependent large signal model of microwave GaN HEMTs. J Semicond, 2016, 37(7), 074006 doi: 10.1088/1674-4926/37/7/074006
[9]
Yu W H, Yang S Y, Hou Y F, et al. Small signal model and low noise application of InAlAs/InGaAs/InP-based PHEMTS. J Infrared Millimeter Waves, 2018, 37(6), 683 doi: 10.11972/j.issn.1001-9014.2018.06.008
[10]
Panda J, Jena K, Swain R, et al. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT. J Semicond, 2016, 37(4), 044003 doi: 10.1088/1674-4926/37/4/044003
[11]
Panda D K, Lenka T R. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J Semicond, 2017, 38(6), 064002 doi: 10.1088/1674-4926/38/6/064002
[12]
Jain N, Gutmann R J. Modeling and design of GaAs MESFET control devices for broad-band applications. IEEE Trans Microwave Theory Tech, 1990, 38(2), 109 doi: 10.1109/22.46418
[13]
Ehoud A, Dunleavy L P, Lazar S C, et al. Extraction techniques for FET switch modeling. IEEE Trans Microwave Theory Tech, 1995, 43(8), 1863 doi: 10.1109/22.402273
[14]
Takatani S, Chen C D. Nonlinear steady-state III–V FET model for microwave antenna switch applications. IEEE Trans Electron Devices, 2011, 58(12), 4301 doi: 10.1109/TED.2011.2169415
[15]
Tao Y, Hu Z F, Fan Y, et al. Direct extraction method of HEMT switch small-signal model with multiparasitic capacitive current path. Int J RF Microwave Comput-Aid Eng, 2019, 29(6), e21690 doi: 10.1002/mmce.21690
[16]
Geng M, Li P X, Luo W J, et al. Small-signal modeling of GaN HEMT switch with a new intrinsic elements extraction method. Chin Phys B, 2016, 25(11), 117301 doi: 10.1088/1674-1056/25/11/117301
[17]
Alt A R, Marti D, Bolognesi C R. Transistor modeling: Robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microwave Mag, 2013, 14(4), 83 doi: 10.1109/MMM.2013.2248593
[18]
White P M, Healy R M. Improved equivalent circuit for determination of mesfet and hemt parasitic capacitors from "coldfet" measurements. IEEE Microwave Guided Wave Letts, 1993, 3(12), 453 doi: 10.1109/75.251398
[19]
Dambrine G, Cappy A, Heliodore F, et al. A new method for determining the FET small-signal equivalent circuit. IEEE Trans Microwave Theory Tech, 1988, 36(7), 1151 doi: 10.1109/22.3650
Fig. 1.  Cross-sectional structure of the dual-gate GaAs pHEMT switch.

Fig. 2.  (Color online) Layout of the dual-gate GaAs pHEMT switch(125 μm × 5).

Fig. 3.  Small-signal equivalent circuit of the dual-gate GaAs pHEMT switch.

Fig. 4.  (Color online) Extracted parasitic capacitances versus frequency.

Fig. 5.  Equivalent circuit of the GaAs pHEMT switch under the condition (Vds = 0 V, Vgs = 0 V).

Fig. 6.  (Color online) Extracted parasitic inductors versus frequency.

Fig. 7.  The intrinsic part with RG, which blocks the RF signal.

Fig. 8.  (Color online) Intrinsic capacitances versus frequency for the common-gate GaAs HEMT without RG.

Fig. 9.  Equivalent circuits of the dual-gate GaAs pHEMT switch.

Fig. 10.  (Color online) Comparison of the S-parameters between the simulation (-) and measurement (◇) over a frequency range of 0.1–20 GHz for a device with size of 5 × 125 μm: (a) dual-gate off state, (b) dual-gate on state, (c) triple-gate off state, (d) triple-gate on state, (e) quadruple-gate off state, and (f) quadruple-gate on state.

Fig. 11.  (Color online) Illustration of the simulated and measured insertion loss and isolation (0.1–20 GHz) for a device with a size of 5 × 125 μm. (a) Insertion loss (dual-gate off state). (b) Isolation (dual-gate off state). (c) Insertion loss (triple-gate on state). (d) Isolation (triple-gate off state). (e) Insertion loss (quadruple-gate on state). (f) Isolation (quadruple-gate off state).

Table 1.   Intrinsic elements of the GaAs HEMT switch with a gate size of 5 × 125 µm.

StateCgdCgsCdsCgg*Rds
On state1.5 pF1.5 pF20.1 fF74.2 fF4.5 Ω
Off state145 fF137 fF20.1 fF64 fF96 kΩ
DownLoad: CSV

Table 2.   Intrinsic parameters of GaAs HEMT switches with different gates.

GateDualTripleQuadruple
Cds(on) (fF)20.115.2111
Cgs(on) (pF)1.52.122.82
Cgd(on) (pF)1.52.152.73
Rds(on) (Ω)4.55.767
Cds(off) (fF)20.115.2111
Cgs(off) (fF)137144152
Cgd(off) (fF)145148161
Rds(off) (kΩ)96182160
Cgg*(off) (fF)6476.27121.6
DownLoad: CSV

Table 3.   The error percentage of GaAs HEMT switches with different gates.

GateDualTripleQuadruple
S11(off)0.75860.9091.131
S12(off)2.5192.2941.981
S21(off)2.4122.3782.066
S22(off)1.3622.5181.746
S11(on)2.2572.4772.197
S12(on)1.1572.2852.805
S21(on)0.76940.60540.604
S22(on)2.29241.2010.573
DownLoad: CSV
[1]
Tosaka H, Fujii T, Miyakoshi K, et al. An antenna switch MMIC using E/D mode p-HEMT for GSM/DCS/PCS/WCDMA bands application. IEEE MTT-S International Microwave Symposium Digest, 2003, 519
[2]
Chiu H C, Cheng C S, Wu C S. Enhancement-and depletion-mode InGaP/InGaAs pHEMTs on 6-inch GaAs substrate. 2005 Asia-Pacific Microwave Conference Proceedings, 2005, 4
[3]
Khusro A, Hashmi M S, Ansari A Q, et al. An accurate and simplified small signal parameter extraction method for GaN HEMT. Int J Circuit Theory Appl, 2019, 47(6), 941 doi: 10.1002/cta.2622
[4]
Chen Y, Xu Y, Luo Y, et al. A reliable and efficient small-signal parameter extraction method for GaN HEMTs. Int J Numer Model: Electron Networks, Devices Fields, 2018, e2540 doi: 10.1002/jnm.2540
[5]
Bilevich D V, Popov A A, Salnikov A S, et al. Automatic nonlinear modeling technique for GaAs HEMT. 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2018, 1
[6]
Yu L, Zheng Y K, Zhang S, et al. Small-signal model parameter extraction for AlGaN/GaN HEMT. J Semicond, 2016, 37(3), 034003 doi: 10.1088/1674-4926/37/3/034003
[7]
Gibiino G P, Santarelli A, Filicori F. Charge-conservative GaN HEMT nonlinear modeling from non-isodynamic multi-bias S-parameter measurements. Int J Microwave Wireless Technol, 2019, 11(5/6), 431 doi: 10.1017/S1759078719000059
[8]
Changsi W, Yuehang X, Zhang W, et al. An improved temperature-dependent large signal model of microwave GaN HEMTs. J Semicond, 2016, 37(7), 074006 doi: 10.1088/1674-4926/37/7/074006
[9]
Yu W H, Yang S Y, Hou Y F, et al. Small signal model and low noise application of InAlAs/InGaAs/InP-based PHEMTS. J Infrared Millimeter Waves, 2018, 37(6), 683 doi: 10.11972/j.issn.1001-9014.2018.06.008
[10]
Panda J, Jena K, Swain R, et al. Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT. J Semicond, 2016, 37(4), 044003 doi: 10.1088/1674-4926/37/4/044003
[11]
Panda D K, Lenka T R. Modeling and simulation of enhancement mode p-GaN Gate AlGaN/GaN HEMT for RF circuit switch applications. J Semicond, 2017, 38(6), 064002 doi: 10.1088/1674-4926/38/6/064002
[12]
Jain N, Gutmann R J. Modeling and design of GaAs MESFET control devices for broad-band applications. IEEE Trans Microwave Theory Tech, 1990, 38(2), 109 doi: 10.1109/22.46418
[13]
Ehoud A, Dunleavy L P, Lazar S C, et al. Extraction techniques for FET switch modeling. IEEE Trans Microwave Theory Tech, 1995, 43(8), 1863 doi: 10.1109/22.402273
[14]
Takatani S, Chen C D. Nonlinear steady-state III–V FET model for microwave antenna switch applications. IEEE Trans Electron Devices, 2011, 58(12), 4301 doi: 10.1109/TED.2011.2169415
[15]
Tao Y, Hu Z F, Fan Y, et al. Direct extraction method of HEMT switch small-signal model with multiparasitic capacitive current path. Int J RF Microwave Comput-Aid Eng, 2019, 29(6), e21690 doi: 10.1002/mmce.21690
[16]
Geng M, Li P X, Luo W J, et al. Small-signal modeling of GaN HEMT switch with a new intrinsic elements extraction method. Chin Phys B, 2016, 25(11), 117301 doi: 10.1088/1674-1056/25/11/117301
[17]
Alt A R, Marti D, Bolognesi C R. Transistor modeling: Robust small-signal equivalent circuit extraction in various HEMT technologies. IEEE Microwave Mag, 2013, 14(4), 83 doi: 10.1109/MMM.2013.2248593
[18]
White P M, Healy R M. Improved equivalent circuit for determination of mesfet and hemt parasitic capacitors from "coldfet" measurements. IEEE Microwave Guided Wave Letts, 1993, 3(12), 453 doi: 10.1109/75.251398
[19]
Dambrine G, Cappy A, Heliodore F, et al. A new method for determining the FET small-signal equivalent circuit. IEEE Trans Microwave Theory Tech, 1988, 36(7), 1151 doi: 10.1109/22.3650
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3672 Times PDF downloads: 71 Times Cited by: 0 Times

    History

    Received: 22 July 2019 Revised: 20 October 2019 Online: Accepted Manuscript: 10 January 2020Uncorrected proof: 16 January 2020Published: 01 March 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lin Luo, Jun Liu, Guofang Wang, Yuxing Wu. Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch[J]. Journal of Semiconductors, 2020, 41(3): 032102. doi: 10.1088/1674-4926/41/3/032102 L Luo, J Liu, G F Wang, Y X Wu, Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch[J]. J. Semicond., 2020, 41(3): 032102. doi: 10.1088/1674-4926/41/3/032102.Export: BibTex EndNote
      Citation:
      Lin Luo, Jun Liu, Guofang Wang, Yuxing Wu. Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch[J]. Journal of Semiconductors, 2020, 41(3): 032102. doi: 10.1088/1674-4926/41/3/032102

      L Luo, J Liu, G F Wang, Y X Wu, Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch[J]. J. Semicond., 2020, 41(3): 032102. doi: 10.1088/1674-4926/41/3/032102.
      Export: BibTex EndNote

      Small-signal modeling and parameter extraction method for a multigate GaAs pHEMT switch

      doi: 10.1088/1674-4926/41/3/032102
      More Information
      • Corresponding author: ljun77@hdu.edu.cn
      • Received Date: 2019-07-22
      • Revised Date: 2019-10-20
      • Published Date: 2020-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return