ARTICLES

Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs

Chen Xu, Changda Zheng, Xiaoming Wu, Shuan Pan, Xingan Jiang, Junlin Liu and Fengyi Jiang

+ Author Affiliations

 Corresponding author: Changda Zheng, Email: zhengchangda@ncu.edu.cn

PDF

Turn off MathJax

Abstract: The impact of the V-pits covering layer (VCL) position on the optoelectronic performance of InGaN-based green light-emitting diodes (LEDs) was investigated. It is found that earlier covering of V-pits will hinder the hole injection via the sidewall of V-pits, and then result in less quantum wells (QWs) participating in radioluminescence. The current-voltage characteristics show that the LEDs with earlier covering of V-pits have higher operating voltage at room temperature, and a more dramatic voltage rise with the reduction of temperature. Meanwhile, more manifested emission peaks for sidewall QWs and deeper QWs near to n-type layer was observed in the sample with earlier coveing of V-pits at cryogenic temperatures, for the reason that the holes being injected via V-pits sidewall have higher kinetic energy and could transport to deeper QWs.

Key words: green light-emitting diodesV-pits covering layerhole injection efficiencyoperating voltage



[1]
Deng G, Zhang Y, Yu Y, et al. Significantly reduced in-plane tensile stress of GaN films grown on SiC substrates by using graded AlGaN buffer and SiNx interlayer. Superlattices Microstruct, 2018, 122, 74 doi: 10.1016/j.spmi.2018.08.020
[2]
Yan L, Zhang Y, Han X, et al. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition. Appl Phys Lett, 2018, 112(18), 182104 doi: 10.1063/1.5023521
[3]
Deng G, Zhang Y, Yu Y, et al. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio. Appl Phys Lett, 2018, 112(15), 151607 doi: 10.1063/1.5022237
[4]
Deng G, Zhang Y, Yu Y, et al. Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate. Superlattices Microstruct, 2018, 116, 1 doi: 10.1016/j.spmi.2018.01.033
[5]
Junlin L, Jianli Z, Guangxu W, et al. Status of GaN-based green light-emitting diodes. Chin Phys B, 2015, 24(6), 39
[6]
Crawford M H. LEDs for solid-state lighting: performance challenges and recent advances. IEEE J Sel Top Quantum Electron, 2009, 15(4), 1028 doi: 10.1109/JSTQE.2009.2013476
[7]
Piprek J. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions. Appl Phys Lett, 2014, 104(5), 2217 doi: 10.1063/1.4864311
[8]
Hangleiter A, Hitzel F, Netzel C, et al. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. Phys Rev Lett, 2005, 95(12), 127402 doi: 10.1103/PhysRevLett.95.127402
[9]
Quan Z, Wang L, Zheng C, et al. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes. J Appl Phys, 2014, 116(18), A779 doi: 10.1063/1.4901828
[10]
Li Y, Yun F, Su X, et al. Deep hole injection assisted by large V-shape pits in InGaN/GaN multiple-quantum-wells blue light-emitting diodes. J Appl Phys, 2014, 116(12), 253512 doi: 10.1063/1.4896362
[11]
Zhou S, Liu X. Effect of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes. Phys Status Solidi Appl Res, 2016, 214(5), 1770125 doi: 10.1002/pssa.201600782
[12]
Takahashi H, Ito A, Tanaka T, et al. Effect of intentionally formed `V-defects' on the emission efficiency of GaInN single. Jpn Soc Appl Phys, 2000, 39, 569 doi: 10.1143/JJAP.39.L569
[13]
Ting S M, Ramer J C, Florescu D I, et al. Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition. J Appl Phys, 2003, 94(3), 1461 doi: 10.1063/1.1586972
[14]
Le L C, Zhao D G, Jiang D S, et al. Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness. J Appl Phys, 2013, 114(14), 143706 doi: 10.1063/1.4824801
[15]
Lv Q, Liu J, Mo C, et al. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure: role of enhanced interwell carrier transport. ACS Photonics, 2018, 6(1), 130 doi: 10.1021/acsphotonics.8b01040
[16]
Wang G, Tao X, Liu J, et al. Temperature-dependent electroluminescence from InGaN/GaN green light-emitting diodes on silicon with different quantum-well structures. Semicond Sci Technol, 2014, 30(1), 15018 doi: 10.1088/0268-1242/30/1/015018
[17]
Wu X, Liu J, Quan Z, et al. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes. Appl Phys Lett, 2014, 104(22), 1634 doi: 10.1063/1.4880731
[18]
Kim J, Tak Y, Kim J, et al. Analysis of forward tunneling current in InGaN/GaN multiple quantum well light-emitting diodes grown on Si (111) substrate. J Appl Phys, 2013, 114(1), 231107 doi: 10.1063/1.4812231
[19]
Kozodoy P, Xing H, Denbaars S P, et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 2000, 87(4), 1832 doi: 10.1063/1.372098
[20]
Xiaoming W. Study on the luminescence properties of V-pits-containing GaN based blue LEDs on Si substrates. Nanchang University, 2014
[21]
Schubert E F, Gessmann T. Light emitting diodes. Encylopedia of Condensed Matter Physics, 2005, 102
Fig. 1.  (Color online) Schematic epitaxial structures of two samples with different position of V-pits covering layer.

Fig. 2.  (Color online) The temperature-dependent EQE as a function of currents at (a) 300 K, (b) 200 K, (c) 150 K, (d) 100 K, respectively.

Fig. 3.  (Color online) The STEM image of two samples with V-pits structure.

Fig. 4.  (Color online) Current–voltage curves in linear scale of two samples at (a) 300 K, (b) 200 K, (c) 150 K, (d) 100 K, respectively.

Fig. 5.  (Color online) The EL spectra of two experimental samples at various injection currents at 100 K.

Fig. 6.  (Color online) Schematic diagram of the potential transport paths of holes in two samples with different position of VCL.

[1]
Deng G, Zhang Y, Yu Y, et al. Significantly reduced in-plane tensile stress of GaN films grown on SiC substrates by using graded AlGaN buffer and SiNx interlayer. Superlattices Microstruct, 2018, 122, 74 doi: 10.1016/j.spmi.2018.08.020
[2]
Yan L, Zhang Y, Han X, et al. Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition. Appl Phys Lett, 2018, 112(18), 182104 doi: 10.1063/1.5023521
[3]
Deng G, Zhang Y, Yu Y, et al. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio. Appl Phys Lett, 2018, 112(15), 151607 doi: 10.1063/1.5022237
[4]
Deng G, Zhang Y, Yu Y, et al. Study on the structural, optical, and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate. Superlattices Microstruct, 2018, 116, 1 doi: 10.1016/j.spmi.2018.01.033
[5]
Junlin L, Jianli Z, Guangxu W, et al. Status of GaN-based green light-emitting diodes. Chin Phys B, 2015, 24(6), 39
[6]
Crawford M H. LEDs for solid-state lighting: performance challenges and recent advances. IEEE J Sel Top Quantum Electron, 2009, 15(4), 1028 doi: 10.1109/JSTQE.2009.2013476
[7]
Piprek J. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions. Appl Phys Lett, 2014, 104(5), 2217 doi: 10.1063/1.4864311
[8]
Hangleiter A, Hitzel F, Netzel C, et al. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. Phys Rev Lett, 2005, 95(12), 127402 doi: 10.1103/PhysRevLett.95.127402
[9]
Quan Z, Wang L, Zheng C, et al. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes. J Appl Phys, 2014, 116(18), A779 doi: 10.1063/1.4901828
[10]
Li Y, Yun F, Su X, et al. Deep hole injection assisted by large V-shape pits in InGaN/GaN multiple-quantum-wells blue light-emitting diodes. J Appl Phys, 2014, 116(12), 253512 doi: 10.1063/1.4896362
[11]
Zhou S, Liu X. Effect of V-pits embedded InGaN/GaN superlattices on optical and electrical properties of GaN-based green light-emitting diodes. Phys Status Solidi Appl Res, 2016, 214(5), 1770125 doi: 10.1002/pssa.201600782
[12]
Takahashi H, Ito A, Tanaka T, et al. Effect of intentionally formed `V-defects' on the emission efficiency of GaInN single. Jpn Soc Appl Phys, 2000, 39, 569 doi: 10.1143/JJAP.39.L569
[13]
Ting S M, Ramer J C, Florescu D I, et al. Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition. J Appl Phys, 2003, 94(3), 1461 doi: 10.1063/1.1586972
[14]
Le L C, Zhao D G, Jiang D S, et al. Effect of V-defects on the performance deterioration of InGaN/GaN multiple-quantum-well light-emitting diodes with varying barrier layer thickness. J Appl Phys, 2013, 114(14), 143706 doi: 10.1063/1.4824801
[15]
Lv Q, Liu J, Mo C, et al. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure: role of enhanced interwell carrier transport. ACS Photonics, 2018, 6(1), 130 doi: 10.1021/acsphotonics.8b01040
[16]
Wang G, Tao X, Liu J, et al. Temperature-dependent electroluminescence from InGaN/GaN green light-emitting diodes on silicon with different quantum-well structures. Semicond Sci Technol, 2014, 30(1), 15018 doi: 10.1088/0268-1242/30/1/015018
[17]
Wu X, Liu J, Quan Z, et al. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes. Appl Phys Lett, 2014, 104(22), 1634 doi: 10.1063/1.4880731
[18]
Kim J, Tak Y, Kim J, et al. Analysis of forward tunneling current in InGaN/GaN multiple quantum well light-emitting diodes grown on Si (111) substrate. J Appl Phys, 2013, 114(1), 231107 doi: 10.1063/1.4812231
[19]
Kozodoy P, Xing H, Denbaars S P, et al. Heavy doping effects in Mg-doped GaN. J Appl Phys, 2000, 87(4), 1832 doi: 10.1063/1.372098
[20]
Xiaoming W. Study on the luminescence properties of V-pits-containing GaN based blue LEDs on Si substrates. Nanchang University, 2014
[21]
Schubert E F, Gessmann T. Light emitting diodes. Encylopedia of Condensed Matter Physics, 2005, 102
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3547 Times PDF downloads: 72 Times Cited by: 0 Times

    History

    Received: 11 December 2018 Revised: 26 February 2019 Online: Uncorrected proof: 12 April 2019Accepted Manuscript: 08 May 2019Published: 08 May 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chen Xu, Changda Zheng, Xiaoming Wu, Shuan Pan, Xingan Jiang, Junlin Liu, Fengyi Jiang. Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs[J]. Journal of Semiconductors, 2019, 40(5): 052801. doi: 10.1088/1674-4926/40/5/052801 C Xu, C D Zheng, X M Wu, S Pan, X G Jiang, J L Liu, F Y Jiang, Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs[J]. J. Semicond., 2019, 40(5): 052801. doi: 10.1088/1674-4926/40/5/052801.Export: BibTex EndNote
      Citation:
      Chen Xu, Changda Zheng, Xiaoming Wu, Shuan Pan, Xingan Jiang, Junlin Liu, Fengyi Jiang. Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs[J]. Journal of Semiconductors, 2019, 40(5): 052801. doi: 10.1088/1674-4926/40/5/052801

      C Xu, C D Zheng, X M Wu, S Pan, X G Jiang, J L Liu, F Y Jiang, Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs[J]. J. Semicond., 2019, 40(5): 052801. doi: 10.1088/1674-4926/40/5/052801.
      Export: BibTex EndNote

      Effects of V-pits covering layer position on the optoelectronic performance of InGaN green LEDs

      doi: 10.1088/1674-4926/40/5/052801
      More Information
      • Corresponding author: Email: zhengchangda@ncu.edu.cn
      • Received Date: 2018-12-11
      • Revised Date: 2019-02-26
      • Published Date: 2019-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return