SEMICONDUCTOR DEVICES

Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength

Yong Zhao1, 2, Chao Xu1, Xiaoqing Jiang1, and Huiliang Ge2

+ Author Affiliations

 Corresponding author: Jiang Xiaoqing, Email:iseejxq@zju.edu.cn

PDF

Abstract: The photocurrent effect in pin silicon waveguides at 1550 nm wavelength is experimentally investigated. The photocurrent is mainly attributed to surface-state absorption, defect-state absorption and/or two-photon absorption. Experimental results show that the photocurrent is enhanced by the avalanche effect. A pin silicon waveguide with an intrinsic region width of 3.4 μm and a length of 2000 μm achieves a responsivity of 4.6 mA/W and an avalanche multiplication factor of about five.

Key words: photodetectorsilicon waveguidephotocurrentavalanche effect



[1]
Zimmermann H. Silicon photo-receivers. Topics in Appl Phys, 2004, 94:239 doi: 10.1007/b11504
[2]
Assefa S, Xia F, Bedell S W, et al. CMOS-integrated high-speed MSM germanium waveguide photodetector. Opt Express, 2010, 18(5):4986 doi: 10.1364/OE.18.004986
[3]
Liao S, Feng N N, Feng D, et al. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 2011, 19(11):10967 doi: 10.1364/OE.19.010967
[4]
Roucka R, Mathews J, Weng C, et al. High-performance near-IR photodiodes:a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon. IEEE J Quantum Electron, 2007, 47(2):213
[5]
Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20(2):1096 doi: 10.1364/OE.20.001096
[6]
Currie M T, Samavedam S B, Langdo T A, et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl Phys Lett, 1998, 72(14):1718 doi: 10.1063/1.121162
[7]
Choi D, Ge Y, Harris J S, et al. Low surface roughness and threading dislocation density Ge growth on Si (001). J Cryst Growth, 2008, 310:4273 doi: 10.1016/j.jcrysgro.2008.07.029
[8]
Kozlowski G, Yamamoto Y, Bauer J, et al. Selective Ge heteroepitaxy on free-standing Si (001) nanopatterns:a combined Raman, transmission electron microscopy, and finite element method study. J Appl Phys, 2011, 110:053509 doi: 10.1063/1.3631783
[9]
Baehr-Jones T, Hochberg M, Scherer A. Photodetection in silicon beyond the band edge with surface states. Opt Express, 2008, 16(3):1659 doi: 10.1364/OE.16.001659
[10]
Chen H, Luo X, Poon A W. Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a pin diode embedded silicon microring resonator. Appl Phys Lett, 2009, 95:171111 doi: 10.1063/1.3257384
[11]
Geis M W, Spector S J, Grein M E, et al. Silicon waveguide infrared photodiodes with > 35 GHz bandwidth and phototransistors with 50 AW-1 response. Opt Express, 2009, 17(7):5193 doi: 10.1364/OE.17.005193
[12]
Ackert J J, Fiorentino M, Logan D F, et al. Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth. J Nanophotonics, 2011, 5:059507 doi: 10.1117/1.3666059
[13]
Casalino M, Sirleto L, Iodice M, et al. Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide. Appl Phys Lett, 2010, 96:241112 doi: 10.1063/1.3455339
[14]
Casalino M, Coppola G, Iodice M, et al. Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm. Opt Express, 2012, 20(11):12599 doi: 10.1364/OE.20.012599
[15]
Hsieh I, Rong H, Paniccia M. Two-photon-absorption-based optical power monitor in silicon rib waveguides. 7th Group IV Photonics, 2010:326 http://ieeexplore.ieee.org/abstract/document/5643336/
[16]
Bravo-Abad J, Ippen E P, Soljacic M. Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption. Appl Phys Lett, 2009, 94:241103 doi: 10.1063/1.3155135
[17]
Chen H, Poon A W. Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators. Appl Phys Lett, 2010, 94:191106 doi: 10.1063/1.3430548
[18]
Yamashita Y, Namba K, Nakato Y, et al. Spectroscopic observation of interface states of ultrathin silicon oxide. J Appl Phys, 1996, 79(9):7051 doi: 10.1063/1.361472
[19]
Fan H Y, Ramdas A K. Infrared absorption and photoconductivity in irradiated silicon. J Appl Phys, 1959, 30(8):1127 doi: 10.1063/1.1735282
[20]
Cheng L J, Corelli J C, Corbett J W, et al. 1.8-, 3.3-, and 3.9-μm bands in irradiated silicon:correlations with the divacancy. Phys Rev, 1966, 152(2):761 doi: 10.1103/PhysRev.152.761
[21]
Casalino M, Sirleto L, Moretti L, et al. Design of a silicon re-sonant cavity enhanced photodetector based on the internal photoemission effect at 1.55μm. J Opt A:Pure Appl Opt, 2006, 8:909 doi: 10.1088/1464-4258/8/10/013
[22]
Zhao Y, Xu C, Wang W, et al. Photocurrent effect in reverse-biased p-n silicon waveguides in communication bands. Chin Phys Lett, 2011, 28(7):074216 doi: 10.1088/0256-307X/28/7/074216
[23]
Liang T K, Tsang H K, Day I E, et al. Silicon waveguide two-photon absorption detector at 1.5μm wavelength for autocorrelation measurements. Appl Phys Lett, 2002, 81(7):1323 doi: 10.1063/1.1500430
[24]
Ang T W, Reed G T, Vonsovici A, et al. Effects of grating heights on highly efficient unibond SOI waveguide grating couplers. IEEE Photon Technol Lett, 2000, 12(1):59 doi: 10.1109/68.817493
[25]
Sze S M, Ng K K. Physics of semiconductor devices. 3rd ed. New York:Wiley, 2007
Fig. 1.  Schematic of a silicon rib waveguide with a pin diode.

Fig. 2.  Photocurrents versus reverse bias voltage at different $D$. The power of the incident 1550 nm light is about 0.5 mW.

Fig. 3.  Photocurrents versus reverse bias voltage at different $L$. The power of the incident 1550 nm light is about 0.5 mW.

Fig. 4.  Photocurrents versus coupled optical power at 31 V reverse bias voltage. Inset: responsivities versus coupled optical power at different reverse bias voltages.

Table 1.   Avalanche multiplication factor ($M)$ of devices with $D$ $=$ 0.3, 0.5 and 1.5 $\mu$m. $M$ $=$ ($I-I_{\rm MD})$/($I_{\rm P}-I_{\rm D})$[25], where $I_{\rm p}$ is the non-multiplied photocurrent, $I_{\rm D}$ is the non-multiplied dark current, $I$ is the total multiplied current and $I_{\rm MD}$ is the multiplied dark current.

[1]
Zimmermann H. Silicon photo-receivers. Topics in Appl Phys, 2004, 94:239 doi: 10.1007/b11504
[2]
Assefa S, Xia F, Bedell S W, et al. CMOS-integrated high-speed MSM germanium waveguide photodetector. Opt Express, 2010, 18(5):4986 doi: 10.1364/OE.18.004986
[3]
Liao S, Feng N N, Feng D, et al. 36 GHz submicron silicon waveguide germanium photodetector. Opt Express, 2011, 19(11):10967 doi: 10.1364/OE.19.010967
[4]
Roucka R, Mathews J, Weng C, et al. High-performance near-IR photodiodes:a novel chemistry-based approach to Ge and Ge-Sn devices integrated on silicon. IEEE J Quantum Electron, 2007, 47(2):213
[5]
Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20(2):1096 doi: 10.1364/OE.20.001096
[6]
Currie M T, Samavedam S B, Langdo T A, et al. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl Phys Lett, 1998, 72(14):1718 doi: 10.1063/1.121162
[7]
Choi D, Ge Y, Harris J S, et al. Low surface roughness and threading dislocation density Ge growth on Si (001). J Cryst Growth, 2008, 310:4273 doi: 10.1016/j.jcrysgro.2008.07.029
[8]
Kozlowski G, Yamamoto Y, Bauer J, et al. Selective Ge heteroepitaxy on free-standing Si (001) nanopatterns:a combined Raman, transmission electron microscopy, and finite element method study. J Appl Phys, 2011, 110:053509 doi: 10.1063/1.3631783
[9]
Baehr-Jones T, Hochberg M, Scherer A. Photodetection in silicon beyond the band edge with surface states. Opt Express, 2008, 16(3):1659 doi: 10.1364/OE.16.001659
[10]
Chen H, Luo X, Poon A W. Cavity-enhanced photocurrent generation by 1.55μm wavelengths linear absorption in a pin diode embedded silicon microring resonator. Appl Phys Lett, 2009, 95:171111 doi: 10.1063/1.3257384
[11]
Geis M W, Spector S J, Grein M E, et al. Silicon waveguide infrared photodiodes with > 35 GHz bandwidth and phototransistors with 50 AW-1 response. Opt Express, 2009, 17(7):5193 doi: 10.1364/OE.17.005193
[12]
Ackert J J, Fiorentino M, Logan D F, et al. Silicon-on-insulator microring resonator defect-based photodetector with 3.5-GHz bandwidth. J Nanophotonics, 2011, 5:059507 doi: 10.1117/1.3666059
[13]
Casalino M, Sirleto L, Iodice M, et al. Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide. Appl Phys Lett, 2010, 96:241112 doi: 10.1063/1.3455339
[14]
Casalino M, Coppola G, Iodice M, et al. Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm. Opt Express, 2012, 20(11):12599 doi: 10.1364/OE.20.012599
[15]
Hsieh I, Rong H, Paniccia M. Two-photon-absorption-based optical power monitor in silicon rib waveguides. 7th Group IV Photonics, 2010:326 http://ieeexplore.ieee.org/abstract/document/5643336/
[16]
Bravo-Abad J, Ippen E P, Soljacic M. Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption. Appl Phys Lett, 2009, 94:241103 doi: 10.1063/1.3155135
[17]
Chen H, Poon A W. Two-photon absorption photocurrent in p-i-n diode embedded silicon microdisk resonators. Appl Phys Lett, 2010, 94:191106 doi: 10.1063/1.3430548
[18]
Yamashita Y, Namba K, Nakato Y, et al. Spectroscopic observation of interface states of ultrathin silicon oxide. J Appl Phys, 1996, 79(9):7051 doi: 10.1063/1.361472
[19]
Fan H Y, Ramdas A K. Infrared absorption and photoconductivity in irradiated silicon. J Appl Phys, 1959, 30(8):1127 doi: 10.1063/1.1735282
[20]
Cheng L J, Corelli J C, Corbett J W, et al. 1.8-, 3.3-, and 3.9-μm bands in irradiated silicon:correlations with the divacancy. Phys Rev, 1966, 152(2):761 doi: 10.1103/PhysRev.152.761
[21]
Casalino M, Sirleto L, Moretti L, et al. Design of a silicon re-sonant cavity enhanced photodetector based on the internal photoemission effect at 1.55μm. J Opt A:Pure Appl Opt, 2006, 8:909 doi: 10.1088/1464-4258/8/10/013
[22]
Zhao Y, Xu C, Wang W, et al. Photocurrent effect in reverse-biased p-n silicon waveguides in communication bands. Chin Phys Lett, 2011, 28(7):074216 doi: 10.1088/0256-307X/28/7/074216
[23]
Liang T K, Tsang H K, Day I E, et al. Silicon waveguide two-photon absorption detector at 1.5μm wavelength for autocorrelation measurements. Appl Phys Lett, 2002, 81(7):1323 doi: 10.1063/1.1500430
[24]
Ang T W, Reed G T, Vonsovici A, et al. Effects of grating heights on highly efficient unibond SOI waveguide grating couplers. IEEE Photon Technol Lett, 2000, 12(1):59 doi: 10.1109/68.817493
[25]
Sze S M, Ng K K. Physics of semiconductor devices. 3rd ed. New York:Wiley, 2007
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2349 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 06 November 2012 Revised: 16 December 2012 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yong Zhao, Chao Xu, Xiaoqing Jiang, Huiliang Ge. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength[J]. Journal of Semiconductors, 2013, 34(6): 064009. doi: 10.1088/1674-4926/34/6/064009 Y Zhao, C Xu, X Q Jiang, H L Ge. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength[J]. J. Semicond., 2013, 34(6): 064009. doi: 10.1088/1674-4926/34/6/064009.Export: BibTex EndNote
      Citation:
      Yong Zhao, Chao Xu, Xiaoqing Jiang, Huiliang Ge. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength[J]. Journal of Semiconductors, 2013, 34(6): 064009. doi: 10.1088/1674-4926/34/6/064009

      Y Zhao, C Xu, X Q Jiang, H L Ge. Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength[J]. J. Semicond., 2013, 34(6): 064009. doi: 10.1088/1674-4926/34/6/064009.
      Export: BibTex EndNote

      Avalanche-enhanced photocurrents in pin silicon waveguides at 1550 nm wavelength

      doi: 10.1088/1674-4926/34/6/064009
      Funds:

      the Natural Basic Research Program of China 2013CB632105

      Project supported by the Natural Basic Research Program of China (No. 2013CB632105) and the National Natural Science Foundation of China (No. 61177055)

      the National Natural Science Foundation of China 61177055

      More Information
      • Corresponding author: Jiang Xiaoqing, Email:iseejxq@zju.edu.cn
      • Received Date: 2012-11-06
      • Revised Date: 2012-12-16
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return