SEMICONDUCTOR INTEGRATED CIRCUITS

A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology

Dong Yan, Luhong Mao, Qiujie Su, Sheng Xie and Shilin Zhang

+ Author Affiliations

 Corresponding author: Mao Luhong, Email:13622122693@139.com

PDF

Abstract: This paper presents a millimeter wave (mm-wave) oscillator that generates signal at 36.56 GHz. The mm-wave oscillator is realized in a UMC 0.18 μm CMOS process. The linear superposition (LS) technique breaks through the limit of cut-off frequency (fT), and realizes a much higher oscillation than fT. Measurement results show that the LS oscillator produces a calibrated -37.17 dBm output power when biased at 1.8 V; the output power of fundamental signal is -10.85 dBm after calibration. The measured phase noise at 1 MHz frequency offset is -112.54 dBc/Hz at the frequency of 9.14 GHz. This circuit can be properly applied to mm-wave communication systems with advantages of low cost and high integration density.

Key words: mm-wave signal generationlinear superpositionoscillatorCMOS process



[1]
Lee J, Li Y A, Hung M H, et al. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits, 2010, 45(12):2746 doi: 10.1109/JSSC.2010.2075250
[2]
Tiebout M, Wohlmuth H D, Knapp H, et al. Low power wideband receiver and transmitter chipset for mm-wave imaging in SiGe bipolar technology. IEEE J Solid-State Circuits, 2012, 47(5):1175 doi: 10.1109/JSSC.2012.2185570
[3]
Lu X, Lee C M, Wu S Y, et al. GaN-based S0-wave sensors on silicon for chemical and biological sensing in liquid environments. IEEE Sensors J, 2013, 13(4):1245 doi: 10.1109/JSEN.2012.2231958
[4]
Pi Z, Khan F, et al. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49(6):101 doi: 10.1109/MCOM.2011.5783993
[5]
Huang Yinkun, Wu Danyu, Zhou Lei, et al. A 23 GHz low power VCO in SiGe BiCMOS technology. Journal of Semiconductors, 2013, 34(4):045003 doi: 10.1088/1674-4926/34/4/045003
[6]
Cheng Wei, Wang Yuan, Zhao Yan, et al. A THz InGaAs/InP double heterojunction bipolar transistor with fmax=325 GHz and BVCBO=10.6 V. Journal of Semiconductors, 2013, 34(5):054006 doi: 10.1088/1674-4926/34/5/054006
[7]
Liu J, Chien H C, Fan S H, et al. Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization. IEEE Photonics Technol Lett, 2011, 23(18):1325 doi: 10.1109/LPT.2011.2159834
[8]
Cao C, Seok E, K K O. 192 GHz push-push VCO in 0.13μm CMOS. Electron Lett, 2006, 42(4):208 doi: 10.1049/el:20064159
[9]
Li X, Yu J, Dong Z, et al. Photonics millimeter-wave generation in the E-band and bidirectional transmission. IEEE Photonics J, 2013, 5(1):7900107 doi: 10.1109/JPHOT.2013.2241419
[10]
Razavi B. Design of analog CMOS integrated circuits. Singapore:McGraw-Hill, 2001
[11]
Huang D, LaRocca T R, Chang M C F, et al. Terahertz CMOS frequency generator using linear superposition technique. IEEE J Solid-State Circuits, 2008, 43(12):2730 doi: 10.1109/JSSC.2008.2004868
[12]
Shang Y, Yu H, Cai D, et al. Design of high-Q millimeter-wave oscillator by differential transmission line loaded with metamaterial resonator in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2013, 61(5):1892 doi: 10.1109/TMTT.2013.2253489
[13]
Kim D D, Kim J, Plouchart J O, et al. A 70 GHz manufacturable complementary LC-VCO with 6.14 GHz tuning range in 65 nm SOI CMOS. IEEE ISSCC, 2007:540 doi: 10.1007%2Fs10470-011-9747-x.pdf
[14]
Cao C, Kenneth K O. A 140-GHz fundamental mode voltage-controlled oscillator in 90-nm CMOS technology. IEEE Microw Wireless Compon Lett, 2006, 16(10):555 doi: 10.1109/LMWC.2006.882385
[15]
Yang J, Kim C Y, Kim D W, et al. Design of a 24-GHz CMOS VCO with an asymmetric-width transformer. IEEE Trans Circuits Syst, 2010, 57(3):173 doi: 10.1109/TCSII.2010.2043381
[16]
Choi T Y, Lee H, Katehi L P B, et al. A low phase noise 10 GHz VCO in 0.18μm CMOS process. The European Conference on Wireless Technology, 2005:273 https://engineering.purdue.edu/~saeedm/CC40.pdf
[17]
Ko S, Kim J G, Song T, et al. 20GHz integrated CMOS frequency sources with a quadrature VCO using transformers. IEEE Radio Frequency Integrated Circuits Symposium, 2004:269 https://engineering.purdue.edu/~saeedm/CC40.pdf
[18]
Liu R C, Chang H Y, Wang C H, et al. A 63 GHz VCO using a standard 0.25μm CMOS process. IEEE ISSCC, 2004:446
[19]
Wang Huan, Wang Zhigong, Feng Jun, et al. A 10GHz LC voltage-controlled oscillator in 0.25μm CMOS. Journal of Semiconductors, 2008, 29(3):484 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=07081101&flag=1
Fig. 1.  Schematic of the fundamental oscillation unit.

Fig. 2.  Block diagram of the LS algorithm.

Fig. 3.  Schematic of the LS oscillator.

Fig. 4.  Chip micrograph of the mm-wave LS oscillator.

Fig. 5.  Spectrum of the signal at 9.14 GHz.

Fig. 6.  Phase noise of 9.14 GHz signal.

Fig. 7.  Measured output waveforms.

Fig. 8.  Photograph of measurement set up.

Fig. 9.  Power spectrum of the output signal.

Table 1.   Fundamental to fourth conversion ratio.

Table 2.   Comparison of oscillator performance.

[1]
Lee J, Li Y A, Hung M H, et al. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits, 2010, 45(12):2746 doi: 10.1109/JSSC.2010.2075250
[2]
Tiebout M, Wohlmuth H D, Knapp H, et al. Low power wideband receiver and transmitter chipset for mm-wave imaging in SiGe bipolar technology. IEEE J Solid-State Circuits, 2012, 47(5):1175 doi: 10.1109/JSSC.2012.2185570
[3]
Lu X, Lee C M, Wu S Y, et al. GaN-based S0-wave sensors on silicon for chemical and biological sensing in liquid environments. IEEE Sensors J, 2013, 13(4):1245 doi: 10.1109/JSEN.2012.2231958
[4]
Pi Z, Khan F, et al. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49(6):101 doi: 10.1109/MCOM.2011.5783993
[5]
Huang Yinkun, Wu Danyu, Zhou Lei, et al. A 23 GHz low power VCO in SiGe BiCMOS technology. Journal of Semiconductors, 2013, 34(4):045003 doi: 10.1088/1674-4926/34/4/045003
[6]
Cheng Wei, Wang Yuan, Zhao Yan, et al. A THz InGaAs/InP double heterojunction bipolar transistor with fmax=325 GHz and BVCBO=10.6 V. Journal of Semiconductors, 2013, 34(5):054006 doi: 10.1088/1674-4926/34/5/054006
[7]
Liu J, Chien H C, Fan S H, et al. Efficient optical millimeter-wave generation using a frequency-tripling Fabry-Perot laser with sideband injection and synchronization. IEEE Photonics Technol Lett, 2011, 23(18):1325 doi: 10.1109/LPT.2011.2159834
[8]
Cao C, Seok E, K K O. 192 GHz push-push VCO in 0.13μm CMOS. Electron Lett, 2006, 42(4):208 doi: 10.1049/el:20064159
[9]
Li X, Yu J, Dong Z, et al. Photonics millimeter-wave generation in the E-band and bidirectional transmission. IEEE Photonics J, 2013, 5(1):7900107 doi: 10.1109/JPHOT.2013.2241419
[10]
Razavi B. Design of analog CMOS integrated circuits. Singapore:McGraw-Hill, 2001
[11]
Huang D, LaRocca T R, Chang M C F, et al. Terahertz CMOS frequency generator using linear superposition technique. IEEE J Solid-State Circuits, 2008, 43(12):2730 doi: 10.1109/JSSC.2008.2004868
[12]
Shang Y, Yu H, Cai D, et al. Design of high-Q millimeter-wave oscillator by differential transmission line loaded with metamaterial resonator in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2013, 61(5):1892 doi: 10.1109/TMTT.2013.2253489
[13]
Kim D D, Kim J, Plouchart J O, et al. A 70 GHz manufacturable complementary LC-VCO with 6.14 GHz tuning range in 65 nm SOI CMOS. IEEE ISSCC, 2007:540 doi: 10.1007%2Fs10470-011-9747-x.pdf
[14]
Cao C, Kenneth K O. A 140-GHz fundamental mode voltage-controlled oscillator in 90-nm CMOS technology. IEEE Microw Wireless Compon Lett, 2006, 16(10):555 doi: 10.1109/LMWC.2006.882385
[15]
Yang J, Kim C Y, Kim D W, et al. Design of a 24-GHz CMOS VCO with an asymmetric-width transformer. IEEE Trans Circuits Syst, 2010, 57(3):173 doi: 10.1109/TCSII.2010.2043381
[16]
Choi T Y, Lee H, Katehi L P B, et al. A low phase noise 10 GHz VCO in 0.18μm CMOS process. The European Conference on Wireless Technology, 2005:273 https://engineering.purdue.edu/~saeedm/CC40.pdf
[17]
Ko S, Kim J G, Song T, et al. 20GHz integrated CMOS frequency sources with a quadrature VCO using transformers. IEEE Radio Frequency Integrated Circuits Symposium, 2004:269 https://engineering.purdue.edu/~saeedm/CC40.pdf
[18]
Liu R C, Chang H Y, Wang C H, et al. A 63 GHz VCO using a standard 0.25μm CMOS process. IEEE ISSCC, 2004:446
[19]
Wang Huan, Wang Zhigong, Feng Jun, et al. A 10GHz LC voltage-controlled oscillator in 0.25μm CMOS. Journal of Semiconductors, 2008, 29(3):484 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=07081101&flag=1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2057 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 25 July 2013 Revised: 13 August 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dong Yan, Luhong Mao, Qiujie Su, Sheng Xie, Shilin Zhang. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology[J]. Journal of Semiconductors, 2014, 35(1): 015006. doi: 10.1088/1674-4926/35/1/015006 D Yan, L H Mao, Q J Su, S Xie, S L Zhang. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology[J]. J. Semicond., 2014, 35(1): 015006. doi: 10.1088/1674-4926/35/1/015006.Export: BibTex EndNote
      Citation:
      Dong Yan, Luhong Mao, Qiujie Su, Sheng Xie, Shilin Zhang. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology[J]. Journal of Semiconductors, 2014, 35(1): 015006. doi: 10.1088/1674-4926/35/1/015006

      D Yan, L H Mao, Q J Su, S Xie, S L Zhang. A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology[J]. J. Semicond., 2014, 35(1): 015006. doi: 10.1088/1674-4926/35/1/015006.
      Export: BibTex EndNote

      A millimeter wave linear superposition oscillator in 0.18 μm CMOS technology

      doi: 10.1088/1674-4926/35/1/015006
      Funds:

      the National Natural Science Foundation of China 61331003

      Project supported by the National Natural Science Foundation of China (No. 61331003)

      More Information
      • Corresponding author: Mao Luhong, Email:13622122693@139.com
      • Received Date: 2013-07-25
      • Revised Date: 2013-08-13
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return