Special Issue on Flexible and Wearable Electronics: from Materials to Applications

Hybrid functional microfibers for textile electronics and biosensors

Bichitra Nanda Sahoo1, Byungwoo Choi1, Jungmok Seo2, 3 and Taeyoon Lee1,

+ Author Affiliations

 Corresponding author: Taeyoon Lee, Email: taeyoon.lee@yonsei.ac.kr

PDF

Turn off MathJax

Abstract: Fibers are low-cost substrates that are abundantly used in our daily lives. This review highlights recent advances in the fabrication and application of multifunctional fibers to achieve fibers with unique functions for specific applications ranging from textile electronics to biomedical applications. By incorporating various nanomaterials such as carbon nanomaterials, metallic nanomaterials, and hydrogel-based biomaterials, the functions of fibers can be precisely engineered. This review also highlights the performance of the functional fibers and electronic materials incorporated with textiles and demonstrates their practical application in pressure/tensile sensors, chemical/biosensors, and drug delivery. Textile technologies in which fibers containing biological factors and cells are formed and assembled into constructions with biomimetic properties have attracted substantial attention in the field of tissue engineering. We also discuss the current limitations of functional textile-based devices and their prospects for use in various future applications.

Key words: textile electronicsbiosensorsfunctional microfibershybrid nanomaterialsnanotechnology



[1]
Sun G Z, Wang X W, Chen P. Microfiber devices based on carbon materials. Mater Today, 2015, 18: 265 doi: 10.1016/j.mattod.2015.01.002
[2]
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845 doi: 10.1038/nmat2297
[3]
Choi N S, Chen Z, Freunberger S A, et al. Challenge facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed, 2012, 51: 9994 doi: 10.1002/anie.201201429
[4]
Wang X, Xiang Q, Liu B, et al. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci Rep, 2013, 3: 2007 doi: 10.1038/srep02007
[5]
Gerwin H G, H. Huitema H E A, Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3: 106 doi: 10.1038/nmat1061
[6]
Wang X F, Song W F, Liu B, et al. High-performance organic-inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Funct Mater, 2013, 23: 1202 doi: 10.1002/adfm.v23.9
[7]
Tian B, Cohen-Karni T, Qing Q, et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science, 2010, 329: 830 doi: 10.1126/science.1192033
[8]
Lu X, Xhai T, Zhang X, et al. WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater, 2012, 24: 938 doi: 10.1002/adma.201104113
[9]
Liang H, Dongchang C, Yong D, et al. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett, 2013, 13: 3135 doi: 10.1021/nl401086t
[10]
Xiao X, Ding T, Yuan L, et al. WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater, 2012, 2: 1328 doi: 10.1002/aenm.v2.11
[11]
Wang X, Liu B, Xiang Q, et al. Spray-painted binder-free snse electrodes for high-performance energy-storage devices. ChemSusChem, 2014, 7: 308 doi: 10.1002/cssc.v7.1
[12]
Liu B, Zhang J, Wang X F, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett, 2012, 12: 3005 doi: 10.1021/nl300794f
[13]
Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543 doi: 10.1038/ncomms2553
[14]
Koo M, Park K, Lee S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett, 2012, 12: 4810 doi: 10.1021/nl302254v
[15]
Wang X, Liu B, Hou X, et al. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res, 2014, 7: 1073 doi: 10.1007/s12274-014-0470-7
[16]
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy Environ Sci, 2014, 7: 1307 doi: 10.1039/C3EE43182G
[17]
Hyeokjo G, Jihyun H, Haegyeom K, et al. Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci, 2014, 7: 538 doi: 10.1039/C3EE42927J
[18]
Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev, 2014, 43: 3303 doi: 10.1039/c3cs60407a
[19]
Sahin O, Kayacan O, Bulgun E Y. Smart textiles for soldier of the future. Defence Sci J, 2005, 55: 195 doi: 10.14429/dsj.55.1982
[20]
Marculescu D, Marculescu R, Zamora N H, et al. Electronic textiles: a platform for pervasive computing. Proc IEEE, 2003, 91: 1995 doi: 10.1109/JPROC.2003.819612
[21]
Robert F S. Electronic textiles charge ahead. Science, 2003, 301: 909 doi: 10.1126/science.301.5635.909
[22]
Hamedi M, Forchheimer R, Inganäs O. Towards woven logic from organic electronic fibres. Nat Mater, 2007, 6: 357 doi: 10.1038/nmat1884
[23]
Rossi D D. Electronic textiles: a logical step. Nat Mater, 2007, 6: 328 doi: 10.1038/nmat1892
[24]
Hamedi M, Herlogsson L, Crispin X, et al. Fiber-embedded electrolyte-gated field-effect transistors for E-textiles. Adv Mater, 2009, 21: 573 doi: 10.1002/adma.200802681
[25]
Maccioni M, Orgiu E, Cosseddu P. Towards the textile transistor: assembly and characterization of an organic field effect transistor with a cylindrical geometry. Appl Phys Lett, 2006, 89: 143515 doi: 10.1063/1.2357030
[26]
Müller C, Hamedi M, Karlsson J. Woven electrochemical transistors on silk fibers. Adv Mater, 2011, 23: 898 doi: 10.1002/adma.v23.7
[27]
O'Connor B, An K H, Zhao Y, et al. Fiber shaped light emitting device. Adv Mater, 2007, 19: 3897 doi: 10.1002/(ISSN)1521-4095
[28]
Kaltenbrunner M, White M S, Gzowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 770 doi: 10.1038/ncomms1772
[29]
Lee M R, Eckert R D, Forberich K, Dennler G, et al. Solar power wires based on organic photovoltaic materials. Science, 2009, 324: 232 doi: 10.1126/science.1168539
[30]
O'Connor B, Pipe K P, Shtein M. Fiber based organic photovoltaic devices. Appl Phys Lett, 2008, 92: 193306 doi: 10.1063/1.2927533
[31]
Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator. J Power Sources, 2008, 175: 909 doi: 10.1016/j.jpowsour.2007.09.096
[32]
Bhattacharya R, Kok M M de, Zhou J. Rechargeable electronic textile battery. Appl Phys Lett, 2009, 95: 223305 doi: 10.1063/1.3269907
[33]
Kwon Y H, Woo S W, Jung H R, et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv Mater, 2012, 24: 5192 doi: 10.1002/adma.201202196
[34]
Bae J, Song M K, Park Y J, et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed, 2011, 50: 1683 doi: 10.1002/anie.201006062
[35]
Fu Y, Cai X, Wu H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater, 2012, 24: 5713 doi: 10.1002/adma.v24.42
[36]
Kuniharu T, Toshitake T, Johnny C H, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater, 2010, 9: 821 doi: 10.1038/nmat2835
[37]
Jeon J, Lee H, Bao Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater, 2013, 25: 850 doi: 10.1002/adma.v25.6
[38]
Feng J, Peng L, Wu Z, et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv Mater, 2012, 24: 1969 doi: 10.1002/adma.201104681
[39]
Lee S, Bae S, Long L, et al. Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy, 2013, 2: 817 doi: 10.1016/j.nanoen.2013.02.004
[40]
Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Comm, 2013, 4: 1859 doi: 10.1038/ncomms2832
[41]
Lee J, Yoon H, Kim T, et al. Micropatterned P (VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv Func Mater, 2015, 25: 3203 doi: 10.1002/adfm.v25.21
[42]
Viry L, Levi A, Totaro M, et al. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater, 2014, 26: 2659 doi: 10.1002/adma.201305064
[43]
Choong C, Shim M, Lee B, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26: 3451 doi: 10.1002/adma.v26.21
[44]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7 doi: 10.1016/j.nanoen.2016.02.053
[45]
Sun Q, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27: 3411 doi: 10.1002/adma.v27.22
[46]
Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38: 28 doi: 10.1016/j.nanoen.2017.05.024
[47]
Park J, Jang J. Fabrication of graphene/free-standing nanofibrillar PEDOT/P (VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon, 2015, 87: 275 doi: 10.1016/j.carbon.2015.02.039
[48]
Nam S, Jang J, Park J J, et al. High-performance low-voltage organic field-effect transistors prepared on electro-polished aluminum wires. ACS Appl Mater Interfaces, 2012, 4: 6 doi: 10.1021/am2011405
[49]
Qin Y. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809 doi: 10.1038/nature06601
[50]
Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911 doi: 10.1038/nature02498
[51]
Rogers J A, Lagally M G, Nuzzo R G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477: 45 doi: 10.1038/nature10381
[52]
Wang Z L, Yang R S, Zhou J, et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater Sci Eng R, 2010, 70: 320 doi: 10.1016/j.mser.2010.06.015
[53]
Wang Z L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010, 5: 540 doi: 10.1016/j.nantod.2010.10.008
[54]
Zhan X W, Zhu D B. Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem, 2010, 1: 409 doi: 10.1039/b9py00325h
[55]
Xue J G. Perspectives on organic photovoltaics. Polym Rev, 2010, 50: 411 doi: 10.1080/15583724.2010.515766
[56]
Brabec C J, Gowrisanker S, Halls J J M, et al. Polymer–fullerene bulk-heterojunction solar cells. Adv Mater, 2010, 22: 3839 doi: 10.1002/adma.200903697
[57]
Hagfeldt A, Boschloo G, Sun L C, et al. Dye-sensitized solar cells. Cheml Rev, 2010, 110: 6595 doi: 10.1021/cr900356p
[58]
Gratzel M. Recent Advances in sensitized mesoscopic solar cells. Acc Chem Res, 2009, 42: 1788 doi: 10.1021/ar900141y
[59]
Klauk H. Organic thin-film transistors. Chem Soc Rev, 2010, 39: 2643 doi: 10.1039/b909902f
[60]
Guo Y L, Yu G, Liu Y Q. Functional organic field-effect transistors. Adv Mater, 2010, 22: 4427 doi: 10.1002/adma.v22:40
[61]
Braga D, Horowitz G. High-performanace organic field-effect transistors. Adv Mater, 2009, 21: 1473 doi: 10.1002/adma.v21:14/15
[62]
Wang Z L. Splendid one-dimensional nanostructures of zinc oxide: a new nano materials family for nanotechnology. ACS Nano, 2008, 2: 1987 doi: 10.1021/nn800631r
[63]
Chae S K, Park H, Yoon J, et al. Ploydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications. Adv Mater, 2007, 19: 521 doi: 10.1002/(ISSN)1521-4095
[64]
Ramakrishna S, Jose R, Archana P S, et al. Scien and engineering of eiectrospun nanofibers for advances in clean energy, wation, and regerative medicine. J Mater Sci, 2010, 45: 6283 doi: 10.1007/s10853-010-4509-1
[65]
Li D, Xia Y N. Electrospinning of nanofibers: reinventing the wheel. Adv Mater, 2004, 16: 1151 doi: 10.1002/(ISSN)1521-4095
[66]
Rošic R, Kocbek P, Pelipenko J, et al. Nanofibers and their biomedical use. Acta Pharma, 2013, 6: 295
[67]
Haider A, Gupta K C, Kang I K. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. BioMed Res Int, 2014, 2014(5): 308306
[68]
Victor L, Ko F. Biomedical applications of nanofibers. Polym Adv Technol, 2011, 22: 350 doi: 10.1002/pat.1813
[69]
Li M, Mondrinos M J, Yang Y, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005, 26: 5999 doi: 10.1016/j.biomaterials.2005.03.030
[70]
Dimitrievska S, Petit A, Ajji A, et al. Biocompatibility of novel polymer-apatite nanocomposite fibers. J Biomed Mater Res A, 2008, 84A: 44 doi: 10.1002/(ISSN)1552-4965
[71]
Frank E, Steudle L M, Ingildeev D, et al. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed, 2014, 53: 5262 doi: 10.1002/anie.v53.21
[72]
Seema A, Andreas G, Joachim W H. Functional materials by electrospinning of polymers. Prog Polym Sci, 2013, 38: 963 doi: 10.1016/j.progpolymsci.2013.02.001
[73]
Kuo C C, Lin C H, Chen W C. Morphology and photophysical properties of light-emitting electrospun nanofibers prepared from poly (fluorene) derivative/PMMA blends. Macromolecules, 2007, 40: 6959 doi: 10.1021/ma071182l
[74]
Chuangchote S, Sagawa T, Yoshikawa S. Ultrafine electrospun conducting polymer blend fibers and their photoluminescence properties. In: Macromolecular symposia. WILEY-VCH Verlag, 2008, 264: 80
[75]
Chuangchote S, Sagawa T, Yoshikawa S. Fabrication and optical properties of electrospun conductive polymer nanofibers from blended polymer solution. Jpn J App Phy, 2008, 47: 787 doi: 10.1143/JJAP.47.787
[76]
Sui X, Shao C, Liu Y. Photoluminescence of polyethylene oxide–ZnO composite electrospun fibers. Polymer, 2007, 48: 1459 doi: 10.1016/j.polymer.2007.01.039
[77]
Abitbol T, Wilson J T, Gray D G. Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. J App Poly Sci, 2011, 119: 803 doi: 10.1002/app.v119:2
[78]
Di Benedetto F, Camposeo A, Persano L, et al. Light-emitting nanocomposite CdS–polymer electrospun fibres via in situ nanoparticle generation. Nanoscale, 2011, 3: 4234 doi: 10.1039/c1nr10399g
[79]
Wang C, Yan P, Wang S, et al. Novel preparation of Ag2S nanoparticles embedded in photoluminescent polymer nanofibres. Pigment Resin Technology, 2011, 40: 17 doi: 10.1108/03699421111095892
[80]
Bianco A, Cacciotti I, Fragalá M E, et al. Eu-doped titania nanofibers: processing, thermal behaviour and luminescent properties. J Nanosci Nanotechnol, 2010, 10: 5183 doi: 10.1166/jnn.2010.2215
[81]
Ding B, Wang M, Yu J, et al. Gas sensors based on electrospun nanofibers. Sensors, 2009, 9: 1609 doi: 10.3390/s90301609
[82]
Chae S K, Park H, Yoon J, et al. Polydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications. Adv Mater, 2007, 19: 521 doi: 10.1002/(ISSN)1521-4095
[83]
Manesh K M, Santhosh P, Gopalan A, et al. Electrospun poly (vinylidene fluoride)/poly (aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal Biochem, 2007, 360: 189 doi: 10.1016/j.ab.2006.09.021
[84]
Bai H, Zhao L, Lu C, et al. Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer, 2009, 50: 3292 doi: 10.1016/j.polymer.2009.04.066
[85]
Ji L, Medford A J, et al. Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer, 2009, 50: 605 doi: 10.1016/j.polymer.2008.11.016
[86]
Chen D, Lei S, Chen Y. A single polyaniline nanofiber field effect transistor and its gas sensing mechanisms. Sensors, 2011, 11: 6509 doi: 10.3390/s110706509
[87]
Wang W, Huang H, Li Z, Zhang H, et al. Zinc oxide nanofiber gas sensors via electrospinning. J Am Ceram Soc, 2008, 91: 3817 doi: 10.1111/jace.2008.91.issue-11
[88]
Wu W Y, Ting J M, Huang P J. Electrospun ZnO nanowires as gas sensors for ethanol detection. Nanoscale Res Lett, 2009, 4: 513 doi: 10.1007/s11671-009-9271-4
[89]
Wei S. Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens Actuators B, 2011, 160: 753 doi: 10.1016/j.snb.2011.08.059
[90]
Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290: 1331 doi: 10.1126/science.290.5495.1331
[91]
Ericson L M, Fan H, Peng H, et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 2004, 305: 1447 doi: 10.1126/science.1101398
[92]
Jiang K L, Li Q, et al. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 2002, 419: 801 doi: 10.1038/419801a
[93]
Randeniya L K, Bendavid A, Martin P J, et al. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 2010, 6: 1806 doi: 10.1002/smll.201000493
[94]
Li Y L, Kinloch I A, Windle A H, et al. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304: 276 doi: 10.1126/science.1094982
[95]
Zhang M, Atkinson K R, Naughman R H, et al. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306: 1358 doi: 10.1126/science.1104276
[96]
Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318: 1892 doi: 10.1126/science.1147635
[97]
Peng H, Sun X, Cai F, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol, 2009, 4: 738 doi: 10.1038/nnano.2009.264
[98]
Pan S, Yang Z, Li H, et al. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J Am Chem Soc, 2013, 135: 10622 doi: 10.1021/ja405012w
[99]
Foroughi J, Spinks G M, Wallace GG et al. Torsional carbon nanotube artificial muscles. Science, 2011, 334: 494 doi: 10.1126/science.1211220
[100]
Guo W, Liu C, Zhao F, et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber. Adv Mater, 2012, 24: 5379 doi: 10.1002/adma.201201845
[101]
Wang K, Meng Q. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013, 25: 1494 doi: 10.1002/adma.v25.10
[102]
Liu Y, Wang X, Qi K, et al. Functionalization of cotton with carbon nanotubes. J Mater Chem, 2008, 18: 3454 doi: 10.1039/b801849a
[103]
Shim B S, Chen W, Doty C, et al. A smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett, 2008, 8: 4151 doi: 10.1021/nl801495p
[104]
Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2: 571 doi: 10.1038/ncomms1583
[105]
Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater, 2012, 24: 1856 doi: 10.1002/adma.v24.14
[106]
Cheng H, Hu Y, Zhao F, et al. Moisture-activated torsional graphene-fiber motor. Adv Mater, 2014, 26: 2909 doi: 10.1002/adma.v26.18
[107]
Gopalsamy K, Xu Z, Zheng B, et al. Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale, 2014, 6: 8595 doi: 10.1039/C4NR02615B
[108]
Lou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun, 2014, 5: 3754
[109]
Li X, Sun P, Fan L, et al. Multifunctional graphene woven fabrics. Sci Rep, 2012, 2: 395 doi: 10.1038/srep00395
[110]
Wang Y W, Yuen C W M, Leung M Y S, et al. Textile Asia. XXXV, 2007, 5: 27
[111]
Lee H J, Jeong S H. Bacteriostasis of nanosized colloidal silver on polyester nonwovens. Textile Res J, 2004, 74: 442 doi: 10.1177/004051750407400511
[112]
Mattana G, Cosseddu P, Fraboni B, et al. Organic electronics on natural cotton fibres. Org Electron, 2011, 12: 2033 doi: 10.1016/j.orgel.2011.09.001
[113]
Qian L. Nanotechnology in textiles: Recent developments and future prospects. AATCC Review, 2004, 4: 14
[114]
He J, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chemistry of Materials, 2003, 15: 4401 doi: 10.1021/cm034720r
[115]
Seung W, Gupta M K, Lee K Y, et al. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 2015, 9: 3501 doi: 10.1021/nn507221f
[116]
Kim B H, Barnhart B S, Kwon J W. Electrostatic power generation using carbon-activated cotton thread on textile. Micro Nano Syst Lett, 2015, 3: 1 doi: 10.1186/s40486-015-0009-z
[117]
Huang Y, Hu H, Huang Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano, 2015, 9: 4766 doi: 10.1021/acsnano.5b00860
[118]
Hu L, Cui Y. Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci, 2012, 5: 6423 doi: 10.1039/c2ee02414d
[119]
Leijten J, Seo J, Yue K, et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater Sci Eng R, 2017, 119: 1
[120]
Barsan M M, Ghica M E, Brett C M. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta, 2015, 881: 1
[121]
Yadav S K, Chandra P, Goyal R N, et al. A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods. Anal Chim Acta, 2013, 762: 14 doi: 10.1016/j.aca.2012.11.037
[122]
Sakamoto H, Watanabe K, Koto A, et al. A bienzyme electrochemical biosensor for the detection of collagen l-hydroxyproline. Sensing and Bio-Sensing Research, 2015, 4: 37 doi: 10.1016/j.sbsr.2015.03.002
[123]
Linardy E M, Erskine S M, Lima N E, et al. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets. Biosens Bioelectron, 2016, 75: 59 doi: 10.1016/j.bios.2015.08.021
[124]
Zhu Y, Chandra P, Shim Y B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem, 2013, 85: 1058 doi: 10.1021/ac302923k
[125]
Zhu Y, Chandra P, Ban C, Shim Y B. Electrochemical evaluation of binding affinity for aptamer selection using the microarray chip. Electroanalysis, 2012, 24: 1057 doi: 10.1002/elan.201100734
[126]
Chandra P, Noh H B, Shim Y B. Cancer cell detection based on the interaction between an anticancer drug and cell membrane components. Chem Commun, 2013, 49: 1900 doi: 10.1039/c2cc38235k
[127]
Kong B, Tang J, Wu Z. Bio-inspired porous antenna-likenanocube/nanowire heterostructure as ultra-sensitive cellularinterfaces. NPG Asia Mater, 2014, 6: e117
[128]
Kong B, Tang J, Wu Z. Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Mater, 2014, 6: e117 doi: 10.1038/nnano.2014.180
[129]
Seo J, Shin J Y, Leijten J, et al. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials, 2018, 153: 85 doi: 10.1016/j.biomaterials.2017.06.022
[130]
Butcher A L, Offeddu G S, Oyen M L. Nanofibrous hydrogel compo-sites as mechanically robust tissue engineering scaffolds. Trends Biotechnol, 2014, 32: 564
[131]
Tamayol A, Akbari M, Annabi N, et al. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv, 2013, 31: 669 doi: 10.1016/j.biotechadv.2012.11.007
[132]
Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater, 2013, 12: 584 doi: 10.1038/nmat3606
[133]
Tamayol A, Najafabadi A H, Alikbarian B, et al. Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs. Adv Healthc Mater, 2015, 4: 2146 doi: 10.1002/adhm.201500492
[134]
Akbari M, Tamayol A, Laforte V, et al. Composite living fibers for creating tissue constructs using textile techniques. Adv Funct Mater, 2014, 24: 4060 doi: 10.1002/adfm.201303655
[135]
Lee J S, Lu Y, Bayer G S, et al. Controllable protein delivery from coated surgical sutures. J Mater Chem, 2010, 20: 8894 doi: 10.1039/c0jm01389g
[136]
Dickson G, Glenn D, Fraser B, et al. Orthopaedic tissue engineering and bone regeneration. Technol Health Care, 2007, 15: 57
[137]
Baguneid M S, Seifalian A M, Salacinski H J, et al. Tissue engineering of blood vessels. Br J Surg, 2006, 93: 282 doi: 10.1002/(ISSN)1365-2168
[138]
Nerem R M, Ensley A E. The tissue engineering of blood vessels and the heart. Am J Transplant, 2004, 4: 36 doi: 10.1111/ajt.2004.4.issue-s6
[139]
Schmidt C E, Leach J B. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng, 2003, 5: 293 doi: 10.1146/annurev.bioeng.5.011303.120731
[140]
Vishakha K, Jaehong L, Juree H, et al. Textile-based electronic components for energy applications: principles, problems, and perspective. Nanomaterials, 2015, 5: 1493 doi: 10.3390/nano5031493
[141]
Seo J, Lee H, Lee S, et al. Direct gravure printing of silicon nanowires using entropic attraction forces. Small, 2012, 8: 1614
[142]
Lee J B, Subramanian V. Organic transistors on fiber: a firststep towards electronic textiles. In Proceedings of IEEE InternationalElectron Devices Meeting (IEDM' 03), 2003: 8
[143]
Garnier F, Horowitz G, Peng X, et al. An all-organic " soft” thin film transistor with very high carrier mobility. Adv Mater, 1990, 2: 592 doi: 10.1002/(ISSN)1521-4095
[144]
Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett, 1986, 49: 1210 doi: 10.1063/1.97417
[145]
De Rossi D. Electronic textiles: a logical step. Nat Mater, 2007, 6: 328 doi: 10.1038/nmat1892
[146]
Maccioni M, Orgiu E, Cosseddu P. Towards the textile transistor: assembly and characterization of an organic field effect transistor with a cylindrical geometry. Appl Phys Lett, 2006, 89: 143515 doi: 10.1063/1.2357030
[147]
Holonyak N. News - first LED by the GE Engineer, Nick Holonyak. Available online: http://www.gelighting.com/ LightingWeb/emea/news-and-media/news/First-LED-by-the-GEengineerNick-Holonyak.jsp (accessed on 16 July 2015)
[148]
Tan J J, Zou C Q, Du S H, Tan J T. Simulation of MIMO channel characteristics for indoor visible light communication with LEDs. Opt Int J Light Electron Opt, 2014, 125: 44 doi: 10.1016/j.ijleo.2013.06.071
[149]
Yu H, Deng D, Chen L, et al. Luminescent properties of novel Ca2.89Mg0.11(PO4)2:Eu2+ single-phase white light-emitting phosphor for white LEDs. Ceram Int, 2015, 41: 3800 doi: 10.1016/j.ceramint.2014.11.055
[150]
Zhang Z, Wang J, Yin Y, et al. A novel green-to-yellow emitting phosphor: BaSi2SN2.67:Eu2+ for potential application in UV-LEDs. Opt Mater, 2013, 35: 1273 doi: 10.1016/j.optmat.2013.01.023
[151]
Park S, Choi I M, Kim S S, et al. A portable mid-range localization system using infrared LEDs for visually impaired people. Infrared Phys Technol, 2014, 67: 583 doi: 10.1016/j.infrared.2014.09.023
[152]
Lourenço M A, Homewood K P. Crystalline-silicon-based infra-red LEDs and routes to laser diodes. Thin Solid Films, 2011, 519: 8441 doi: 10.1016/j.tsf.2011.05.020
[153]
Zimmerman J. Technische Stickerei fur die Produktion innovativer Textilien. Forster Rohner Textile Innovations, Intelligente Textilien, Bayern Innovativ, Lindau, 2013
[154]
Wise K D. Integrated sensors: Interfacing electronics to a non-electronic world. Sens Actuators, 1981, 2: 229 doi: 10.1016/0250-6874(81)80043-1
[155]
Nese M, Seeberg B E. Silicon MEMS pressure sensors for aerospace applications. ASME Proc, 2006: 195
[156]
Lin L, Yun W. MEMS pressure sensors for aerospace applications. Proceedings of 1998 IEEE Aerospace Conference, 1998: 429
[157]
Mishra V, Singh N, Tiwari U, Kapur P. Fiber grating sensors in medicine: current and emerging applications. Sens Actuators Phys, 2011, 167: 279 doi: 10.1016/j.sna.2011.02.045
[158]
Girão P S, Ramos P M P, Postolache O, et al. Tactile sensors for robotic applications. Measurement, 2013, 46: 1257 doi: 10.1016/j.measurement.2012.11.015
[159]
Wu W, Liang L, Xu R, et al. The application of fiber grating sensor network in port-machinery monitoring. Opt Lasers Eng, 2010, 48: 427 doi: 10.1016/j.optlaseng.2009.09.006
[160]
Kinnunen M, Mian S Q, Oinas-Kukkonen H, et al. Wearable and mobile sensors connected to social media in human well-being applications. Telemat Inform, 2016, 33: 92 doi: 10.1016/j.tele.2015.06.008
[161]
Shimojo M, Namiki A, Ishikawa M. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens J, 2004, 4: 589 doi: 10.1109/JSEN.2004.833152
[162]
Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater, 2015, 27: 2433 doi: 10.1002/adma.201500009
[163]
Matsuhisa N, Inoue D, Zalar P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature Mater, 2017, 16: 834 doi: 10.1038/nmat4904
[164]
Hammock M L, Chortos A, Tee B C K et al. The evolution of electronic skin (e-Skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997 doi: 10.1002/adma.201302240
[165]
Kim D H, Lu N, Ma R et al. Epidermal electronics. Science, 2011, 333: 838 doi: 10.1126/science.1206157
[166]
Najafabadi A H, Tamayol A, Annabi N et al. Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Adv Mater, 2014, 26: 5823 doi: 10.1002/adma.v26.33
[167]
Sun J Y, Keplinger C, Whitesides G M, et al. Ionic skin. Adv Mater, 2014, 26: 7608 doi: 10.1002/adma.v26.45
[168]
Windmiller J R, Wang J. Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 2013, 25: 29 doi: 10.1002/elan.201200349
[169]
Jin Y, Seo J, Lee J S et al. Triboelectric nanogenerator accelerates highly efficient nonviral direct conversion and in vivo reprogramming of fibroblasts to functional neuronal cells. Adv Mater, 2016, 28: 7365
[170]
Carrilho E, Martinez A W, Whitesides G M. Understandingwax printing: a simple micropatterning process for paperbasedmicrofluidics. Anal Chem, 2009, 81: 7091
[171]
Li X, Tian J, Nguyen T et al. Paper-based microfluidic devices by plasma treatment. Anal Chem, 2008, 80: 9131 doi: 10.1021/ac801729t
[172]
Martinez A W, Phillips S T, Wiley B J, et al. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip, 2008, 8: 2146 doi: 10.1039/b811135a
[173]
Pooria M, Mohsen A, Kyle A A, et al. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst Nanoeng, 2016, 2: 16039 doi: 10.1038/micronano.2016.39
[174]
Yetisten A K. Nanotechnology in textiles. ACS Nano, 2016, 10: 3042 doi: 10.1021/acsnano.5b08176
[175]
Kunigunde C, Liesbeth V. Smart textiles: challenges and opportunities. J Appl Phys, 2012, 112: 091301 doi: 10.1063/1.4742728
[176]
Sawhney A P S, Condon B, Singh K V, et al. Modern applications of nanotechnology in textiles. Textile Res J, 2008, 78: 731 doi: 10.1177/0040517508091066
[177]
Paradiso R, Loriga G, Taccini N, et al. WEALTHY-a wearable healthcare system: new frontier on e-textile. J Telecommun Inform Technol, 2005, 4: 105
[178]
Jung S, Lauterbach C, Strasser M, et al. Enabling technologies for disappearing electronics in smart textiles. IEEE International Solid-State Circuits Conference, 2003, 1: 386 doi: 10.1109/ISSCC.2003.1234347
[179]
Catrysse M, Puers R, Hertleer C, et al. Towards the integration of textile sensors in a wireless monitoring suit. Sens Actuators A, 2004, 114: 302 doi: 10.1016/j.sna.2003.10.071
[180]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6: 296 doi: 10.1038/nnano.2011.36
[181]
Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12: 938 doi: 10.1038/nmat3755
[182]
Jiang S, Zhang H, Song S, et al. Highly stretchable conductive fibers from few-walled carbon nanotubes coated on poly (m-phenylene isophthalamide) polymer core/shell structures. ACS Nano, 2015, 9: 6394 doi: 10.1021/acsnano.5b02010
[183]
Lee J H, Yoon H J, Kim T Y, et al. Micropatterned P (VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv Funct Mater, 2015, 25: 3203 doi: 10.1002/adfm.v25.21
[184]
Kim J, Lee M, Shim H J. Micropatterned stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 2014, 5: 11
[185]
Chen S, Lou Z, Chen D, et al. Wearable electronics: polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technol, 2016, 1: 1600136 doi: 10.1002/admt.201600136
[186]
Sun Q, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27: 3411 doi: 10.1002/adma.v27.22
[187]
Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320: 507 doi: 10.1126/science.1154367
[188]
Lee J H, Lee K Y, Gupta M K, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater, 2014, 26: 765 doi: 10.1002/adma.201303570
[189]
Xiao X, Yuan L, Zhong J, et al. High-strain sensors based on zno nanowire/polystyrene hybridized flexible films. Adv Mater, 2011, 23: 5440 doi: 10.1002/adma.201103406
[190]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7 doi: 10.1016/j.nanoen.2016.02.053
[191]
Wang L, Li Y A. review for conductive polymer piezoresistive composites and a development of a compliant pressure transducer. IEEE Trans Instrum Meas, 2013, 62: 495 doi: 10.1109/TIM.2012.2215160
[192]
Schiøtz J, Di Tolla, F D, et al. Softening of nanocrystalline metals at very small grain sizes. Nature, 1998, 391: 561 doi: 10.1038/35328
[193]
Hammock M L, Chortos A, Tee B C K, et al. The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997 doi: 10.1002/adma.201302240
[194]
Chun S, Kim Y, Jin H, et al. A graphene force sensor with pressure-amplifying structure. Carbon, 2014, 78: 601 doi: 10.1016/j.carbon.2014.07.051
[195]
Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8: 4689 doi: 10.1021/nn500441k
[196]
Zou D, Wang D, Chu Z, et al. Fiber-shaped flexible solar cells. Coord Chem Rev, 2010, 254: 1169 doi: 10.1016/j.ccr.2010.02.012
[197]
Fan X, Chu Z Z, Wang F Z, et al. Wire-shaped flexible dye-sensitized solar cells. Adv Mater, 2008, 20: 592 doi: 10.1002/(ISSN)1521-4095
[198]
Weintraub B, Wei Y, Wang Z L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angewandte Chemie, 2009, 48: 8981 doi: 10.1002/anie.v48:47
[199]
Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator. J Power Sources, 2008, 175: 909 doi: 10.1016/j.jpowsour.2007.09.096
[200]
Qin Y, Wang X, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809 doi: 10.1038/nature06601
[201]
Qin Y, Wang X, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging. Nature, 2009, 457: 340 doi: 10.1038/nature07628
[202]
Liu J, Namboothiry M A, Carroll D L. Optical geometries for fiber-based organic photovoltaics. Appl Phys Lett, 2007, 90: 133515 doi: 10.1063/1.2716864
[203]
Zeng W, Shu L, Li Q, et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater, 2014, 26: 5310 doi: 10.1002/adma.201400633
[204]
Zhong J, Zhang Y, Zhong Q, et al. Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 2014, 8: 6273 doi: 10.1021/nn501732z
[205]
Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6: 2345 doi: 10.1039/c3nr05496a
[206]
Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7: 216 doi: 10.1088/0957-4484/7/3/009
[207]
Subbiah T, Bhat G S, Tock R W, et al. Electrospinning of nanofibers. J Appl Polym Sci, 2005, 96: 557 doi: 10.1002/(ISSN)1097-4628
[208]
Agarwal S, Wendorff J H, Greiner A. Use of electrospinning technique for biomedical applications. Polymer, 2008, 49: 5603 doi: 10.1016/j.polymer.2008.09.014
[209]
Bhardwaj N, Kundu S C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010, 28: 325 doi: 10.1016/j.biotechadv.2010.01.004
[210]
Rogina A. Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci, 2014, 296: 221 doi: 10.1016/j.apsusc.2014.01.098
[211]
Persano L, Camposeo A, Tekmen C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review,. Macromol Mater Eng, 2013, 298: 504 doi: 10.1002/mame.v298.5
[212]
Pelipenko J, Kocbek P, Govedarica B, et al. The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. Eur J Pharm Biopharm, 2013, 84: 401 doi: 10.1016/j.ejpb.2012.09.009
[213]
Zamani M, Prabhakaran M P, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomed, 2013, 8: 1997
[214]
Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Contr Release, 2005, 105: 43 doi: 10.1016/j.jconrel.2005.02.024
[215]
Liu Y, Meng C, Zhang A P, et al. Compact microfiber Bragg gratings with high-index contrast. Opt Lett, 2011, 36: 3115 doi: 10.1364/OL.36.003115
[216]
Ran Y, Tan Y N, Sun L P, et al. 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt Express, 2011, 19: 18577 doi: 10.1364/OE.19.018577
[217]
Kou J L, Qiu S J, Xu F, et al. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt Express, 2011, 19: 18452 doi: 10.1364/OE.19.018452
[218]
Wieduwilt T, Brückner S, Bartelt H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers. Meas Sci Technol, 2011, 22: 075201 doi: 10.1088/0957-0233/22/7/075201
[219]
Wang X F, Jiang K, Shen G Z. Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater Today, 2015, 18: 265 doi: 10.1016/j.mattod.2015.01.002
Fig. 1.  (Color online) Fabrication of GWFs by CVD using copper wire meshes as substrates. (a) Schematic of the steps for GWF preparation. (b) Macroscopic optical images (left), top-view SEM images (right) of copper meshes before (top) and after (bottom) graphene growth. Scale bars, 200 mm. (c) Ultraviolet–visible–near infrared transmission spectra and (d) transparency (at 550 nm) versus sheet resistance plots. Reproduced from Ref. [109] with permission by Nature Publishing Group, Copyright 2012.

Fig. 2.  (Color online) (a) Schematic of the fabrication of the pressure sensor. (b) Photograph showing the fabricated pressure sensor on a PET substrate using 2 × 2 conductive fibers. (c) Capacitive response of the pressure sensor for various applied loads of 0.05, 0.1, and 0.5 N. (d) Response and relaxation curves for the device under repeated application and removal of a 0.5 N load. Reproduced from Ref. [162] with permission by John Wiley and Sons, Copyright 2015.

Fig. 3.  (Color online) Printable elastic conductors by in situ formation of silver nanoparticles (AgNPs) from silver flakes. (a) Fabrication process. (b) AgNPs are in situ synthesized just by mixing four components and printing. Electrical characteristics of elastic conductors with different formulations. (c) Conductivity–strain characteristics of elastic conductors with and without surfactant and with and without high-temperature treatment. (d) Dependence of conductivity on the volume fraction of fluorine surfactant. (e) Dependence of conductivity and stretchability on the post-process annealing temperature. Reproduced from Ref. [163] with permission by Nature Publishing Group, Copyright 2017.

Fig. 4.  (Color online) (a). A toolkit of thread-based chemical and physical sensors, microfluidic channels, and interconnects for the realization of a thread-based diagnostic device (TDD), shown here for transdermal health monitoring, characterization of chemical sensors. (b) and (c) Optical image of a multiplexed microfluidic pH sensor assay. (d) Schematic of the measurement of pH in an in vitro skin model. (e) Transient response of the pH sensor to different pH values. (f) Calibration plot of the pH sensor. (g) Continuous pH measurement for 4 h. Reproduced from Ref. [173] under the CC BY license.

[1]
Sun G Z, Wang X W, Chen P. Microfiber devices based on carbon materials. Mater Today, 2015, 18: 265 doi: 10.1016/j.mattod.2015.01.002
[2]
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater, 2008, 7: 845 doi: 10.1038/nmat2297
[3]
Choi N S, Chen Z, Freunberger S A, et al. Challenge facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed, 2012, 51: 9994 doi: 10.1002/anie.201201429
[4]
Wang X, Xiang Q, Liu B, et al. TiO2 modified FeS nanostructures with enhanced electrochemical performance for lithium-ion batteries. Sci Rep, 2013, 3: 2007 doi: 10.1038/srep02007
[5]
Gerwin H G, H. Huitema H E A, Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater, 2004, 3: 106 doi: 10.1038/nmat1061
[6]
Wang X F, Song W F, Liu B, et al. High-performance organic-inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates. Adv Funct Mater, 2013, 23: 1202 doi: 10.1002/adfm.v23.9
[7]
Tian B, Cohen-Karni T, Qing Q, et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science, 2010, 329: 830 doi: 10.1126/science.1192033
[8]
Lu X, Xhai T, Zhang X, et al. WO3−x@Au@MnO2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater, 2012, 24: 938 doi: 10.1002/adma.201104113
[9]
Liang H, Dongchang C, Yong D, et al. Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett, 2013, 13: 3135 doi: 10.1021/nl401086t
[10]
Xiao X, Ding T, Yuan L, et al. WO3−x/MoO3−x core/shell nanowires on carbon fabric as an anode for all-solid-state asymmetric supercapacitors. Adv Energy Mater, 2012, 2: 1328 doi: 10.1002/aenm.v2.11
[11]
Wang X, Liu B, Xiang Q, et al. Spray-painted binder-free snse electrodes for high-performance energy-storage devices. ChemSusChem, 2014, 7: 308 doi: 10.1002/cssc.v7.1
[12]
Liu B, Zhang J, Wang X F, et al. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett, 2012, 12: 3005 doi: 10.1021/nl300794f
[13]
Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543 doi: 10.1038/ncomms2553
[14]
Koo M, Park K, Lee S H, et al. Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett, 2012, 12: 4810 doi: 10.1021/nl302254v
[15]
Wang X, Liu B, Hou X, et al. Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Res, 2014, 7: 1073 doi: 10.1007/s12274-014-0470-7
[16]
Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects. Energy Environ Sci, 2014, 7: 1307 doi: 10.1039/C3EE43182G
[17]
Hyeokjo G, Jihyun H, Haegyeom K, et al. Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci, 2014, 7: 538 doi: 10.1039/C3EE42927J
[18]
Peng X, Peng L, Wu C, et al. Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev, 2014, 43: 3303 doi: 10.1039/c3cs60407a
[19]
Sahin O, Kayacan O, Bulgun E Y. Smart textiles for soldier of the future. Defence Sci J, 2005, 55: 195 doi: 10.14429/dsj.55.1982
[20]
Marculescu D, Marculescu R, Zamora N H, et al. Electronic textiles: a platform for pervasive computing. Proc IEEE, 2003, 91: 1995 doi: 10.1109/JPROC.2003.819612
[21]
Robert F S. Electronic textiles charge ahead. Science, 2003, 301: 909 doi: 10.1126/science.301.5635.909
[22]
Hamedi M, Forchheimer R, Inganäs O. Towards woven logic from organic electronic fibres. Nat Mater, 2007, 6: 357 doi: 10.1038/nmat1884
[23]
Rossi D D. Electronic textiles: a logical step. Nat Mater, 2007, 6: 328 doi: 10.1038/nmat1892
[24]
Hamedi M, Herlogsson L, Crispin X, et al. Fiber-embedded electrolyte-gated field-effect transistors for E-textiles. Adv Mater, 2009, 21: 573 doi: 10.1002/adma.200802681
[25]
Maccioni M, Orgiu E, Cosseddu P. Towards the textile transistor: assembly and characterization of an organic field effect transistor with a cylindrical geometry. Appl Phys Lett, 2006, 89: 143515 doi: 10.1063/1.2357030
[26]
Müller C, Hamedi M, Karlsson J. Woven electrochemical transistors on silk fibers. Adv Mater, 2011, 23: 898 doi: 10.1002/adma.v23.7
[27]
O'Connor B, An K H, Zhao Y, et al. Fiber shaped light emitting device. Adv Mater, 2007, 19: 3897 doi: 10.1002/(ISSN)1521-4095
[28]
Kaltenbrunner M, White M S, Gzowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun, 2012, 3: 770 doi: 10.1038/ncomms1772
[29]
Lee M R, Eckert R D, Forberich K, Dennler G, et al. Solar power wires based on organic photovoltaic materials. Science, 2009, 324: 232 doi: 10.1126/science.1168539
[30]
O'Connor B, Pipe K P, Shtein M. Fiber based organic photovoltaic devices. Appl Phys Lett, 2008, 92: 193306 doi: 10.1063/1.2927533
[31]
Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator. J Power Sources, 2008, 175: 909 doi: 10.1016/j.jpowsour.2007.09.096
[32]
Bhattacharya R, Kok M M de, Zhou J. Rechargeable electronic textile battery. Appl Phys Lett, 2009, 95: 223305 doi: 10.1063/1.3269907
[33]
Kwon Y H, Woo S W, Jung H R, et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv Mater, 2012, 24: 5192 doi: 10.1002/adma.201202196
[34]
Bae J, Song M K, Park Y J, et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew Chem Int Ed, 2011, 50: 1683 doi: 10.1002/anie.201006062
[35]
Fu Y, Cai X, Wu H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater, 2012, 24: 5713 doi: 10.1002/adma.v24.42
[36]
Kuniharu T, Toshitake T, Johnny C H, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater, 2010, 9: 821 doi: 10.1038/nmat2835
[37]
Jeon J, Lee H, Bao Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv Mater, 2013, 25: 850 doi: 10.1002/adma.v25.6
[38]
Feng J, Peng L, Wu Z, et al. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv Mater, 2012, 24: 1969 doi: 10.1002/adma.201104681
[39]
Lee S, Bae S, Long L, et al. Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy, 2013, 2: 817 doi: 10.1016/j.nanoen.2013.02.004
[40]
Schwartz G, Tee B C K, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Comm, 2013, 4: 1859 doi: 10.1038/ncomms2832
[41]
Lee J, Yoon H, Kim T, et al. Micropatterned P (VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv Func Mater, 2015, 25: 3203 doi: 10.1002/adfm.v25.21
[42]
Viry L, Levi A, Totaro M, et al. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater, 2014, 26: 2659 doi: 10.1002/adma.201305064
[43]
Choong C, Shim M, Lee B, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater, 2014, 26: 3451 doi: 10.1002/adma.v26.21
[44]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7 doi: 10.1016/j.nanoen.2016.02.053
[45]
Sun Q, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27: 3411 doi: 10.1002/adma.v27.22
[46]
Lou Z, Chen S, Wang L, et al. Ultrasensitive and ultraflexible e-skins with dual functionalities for wearable electronics. Nano Energy, 2017, 38: 28 doi: 10.1016/j.nanoen.2017.05.024
[47]
Park J, Jang J. Fabrication of graphene/free-standing nanofibrillar PEDOT/P (VDF-HFP) hybrid device for wearable and sensitive electronic skin application. Carbon, 2015, 87: 275 doi: 10.1016/j.carbon.2015.02.039
[48]
Nam S, Jang J, Park J J, et al. High-performance low-voltage organic field-effect transistors prepared on electro-polished aluminum wires. ACS Appl Mater Interfaces, 2012, 4: 6 doi: 10.1021/am2011405
[49]
Qin Y. Microfibre-nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809 doi: 10.1038/nature06601
[50]
Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428: 911 doi: 10.1038/nature02498
[51]
Rogers J A, Lagally M G, Nuzzo R G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477: 45 doi: 10.1038/nature10381
[52]
Wang Z L, Yang R S, Zhou J, et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater Sci Eng R, 2010, 70: 320 doi: 10.1016/j.mser.2010.06.015
[53]
Wang Z L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010, 5: 540 doi: 10.1016/j.nantod.2010.10.008
[54]
Zhan X W, Zhu D B. Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem, 2010, 1: 409 doi: 10.1039/b9py00325h
[55]
Xue J G. Perspectives on organic photovoltaics. Polym Rev, 2010, 50: 411 doi: 10.1080/15583724.2010.515766
[56]
Brabec C J, Gowrisanker S, Halls J J M, et al. Polymer–fullerene bulk-heterojunction solar cells. Adv Mater, 2010, 22: 3839 doi: 10.1002/adma.200903697
[57]
Hagfeldt A, Boschloo G, Sun L C, et al. Dye-sensitized solar cells. Cheml Rev, 2010, 110: 6595 doi: 10.1021/cr900356p
[58]
Gratzel M. Recent Advances in sensitized mesoscopic solar cells. Acc Chem Res, 2009, 42: 1788 doi: 10.1021/ar900141y
[59]
Klauk H. Organic thin-film transistors. Chem Soc Rev, 2010, 39: 2643 doi: 10.1039/b909902f
[60]
Guo Y L, Yu G, Liu Y Q. Functional organic field-effect transistors. Adv Mater, 2010, 22: 4427 doi: 10.1002/adma.v22:40
[61]
Braga D, Horowitz G. High-performanace organic field-effect transistors. Adv Mater, 2009, 21: 1473 doi: 10.1002/adma.v21:14/15
[62]
Wang Z L. Splendid one-dimensional nanostructures of zinc oxide: a new nano materials family for nanotechnology. ACS Nano, 2008, 2: 1987 doi: 10.1021/nn800631r
[63]
Chae S K, Park H, Yoon J, et al. Ploydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications. Adv Mater, 2007, 19: 521 doi: 10.1002/(ISSN)1521-4095
[64]
Ramakrishna S, Jose R, Archana P S, et al. Scien and engineering of eiectrospun nanofibers for advances in clean energy, wation, and regerative medicine. J Mater Sci, 2010, 45: 6283 doi: 10.1007/s10853-010-4509-1
[65]
Li D, Xia Y N. Electrospinning of nanofibers: reinventing the wheel. Adv Mater, 2004, 16: 1151 doi: 10.1002/(ISSN)1521-4095
[66]
Rošic R, Kocbek P, Pelipenko J, et al. Nanofibers and their biomedical use. Acta Pharma, 2013, 6: 295
[67]
Haider A, Gupta K C, Kang I K. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. BioMed Res Int, 2014, 2014(5): 308306
[68]
Victor L, Ko F. Biomedical applications of nanofibers. Polym Adv Technol, 2011, 22: 350 doi: 10.1002/pat.1813
[69]
Li M, Mondrinos M J, Yang Y, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005, 26: 5999 doi: 10.1016/j.biomaterials.2005.03.030
[70]
Dimitrievska S, Petit A, Ajji A, et al. Biocompatibility of novel polymer-apatite nanocomposite fibers. J Biomed Mater Res A, 2008, 84A: 44 doi: 10.1002/(ISSN)1552-4965
[71]
Frank E, Steudle L M, Ingildeev D, et al. Carbon fibers: precursor systems, processing, structure, and properties. Angew Chem Int Ed, 2014, 53: 5262 doi: 10.1002/anie.v53.21
[72]
Seema A, Andreas G, Joachim W H. Functional materials by electrospinning of polymers. Prog Polym Sci, 2013, 38: 963 doi: 10.1016/j.progpolymsci.2013.02.001
[73]
Kuo C C, Lin C H, Chen W C. Morphology and photophysical properties of light-emitting electrospun nanofibers prepared from poly (fluorene) derivative/PMMA blends. Macromolecules, 2007, 40: 6959 doi: 10.1021/ma071182l
[74]
Chuangchote S, Sagawa T, Yoshikawa S. Ultrafine electrospun conducting polymer blend fibers and their photoluminescence properties. In: Macromolecular symposia. WILEY-VCH Verlag, 2008, 264: 80
[75]
Chuangchote S, Sagawa T, Yoshikawa S. Fabrication and optical properties of electrospun conductive polymer nanofibers from blended polymer solution. Jpn J App Phy, 2008, 47: 787 doi: 10.1143/JJAP.47.787
[76]
Sui X, Shao C, Liu Y. Photoluminescence of polyethylene oxide–ZnO composite electrospun fibers. Polymer, 2007, 48: 1459 doi: 10.1016/j.polymer.2007.01.039
[77]
Abitbol T, Wilson J T, Gray D G. Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. J App Poly Sci, 2011, 119: 803 doi: 10.1002/app.v119:2
[78]
Di Benedetto F, Camposeo A, Persano L, et al. Light-emitting nanocomposite CdS–polymer electrospun fibres via in situ nanoparticle generation. Nanoscale, 2011, 3: 4234 doi: 10.1039/c1nr10399g
[79]
Wang C, Yan P, Wang S, et al. Novel preparation of Ag2S nanoparticles embedded in photoluminescent polymer nanofibres. Pigment Resin Technology, 2011, 40: 17 doi: 10.1108/03699421111095892
[80]
Bianco A, Cacciotti I, Fragalá M E, et al. Eu-doped titania nanofibers: processing, thermal behaviour and luminescent properties. J Nanosci Nanotechnol, 2010, 10: 5183 doi: 10.1166/jnn.2010.2215
[81]
Ding B, Wang M, Yu J, et al. Gas sensors based on electrospun nanofibers. Sensors, 2009, 9: 1609 doi: 10.3390/s90301609
[82]
Chae S K, Park H, Yoon J, et al. Polydiacetylene supramolecules in electrospun microfibers: fabrication, micropatterning, and sensor applications. Adv Mater, 2007, 19: 521 doi: 10.1002/(ISSN)1521-4095
[83]
Manesh K M, Santhosh P, Gopalan A, et al. Electrospun poly (vinylidene fluoride)/poly (aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal Biochem, 2007, 360: 189 doi: 10.1016/j.ab.2006.09.021
[84]
Bai H, Zhao L, Lu C, et al. Composite nanofibers of conducting polymers and hydrophobic insulating polymers: preparation and sensing applications. Polymer, 2009, 50: 3292 doi: 10.1016/j.polymer.2009.04.066
[85]
Ji L, Medford A J, et al. Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer, 2009, 50: 605 doi: 10.1016/j.polymer.2008.11.016
[86]
Chen D, Lei S, Chen Y. A single polyaniline nanofiber field effect transistor and its gas sensing mechanisms. Sensors, 2011, 11: 6509 doi: 10.3390/s110706509
[87]
Wang W, Huang H, Li Z, Zhang H, et al. Zinc oxide nanofiber gas sensors via electrospinning. J Am Ceram Soc, 2008, 91: 3817 doi: 10.1111/jace.2008.91.issue-11
[88]
Wu W Y, Ting J M, Huang P J. Electrospun ZnO nanowires as gas sensors for ethanol detection. Nanoscale Res Lett, 2009, 4: 513 doi: 10.1007/s11671-009-9271-4
[89]
Wei S. Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning. Sens Actuators B, 2011, 160: 753 doi: 10.1016/j.snb.2011.08.059
[90]
Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290: 1331 doi: 10.1126/science.290.5495.1331
[91]
Ericson L M, Fan H, Peng H, et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science, 2004, 305: 1447 doi: 10.1126/science.1101398
[92]
Jiang K L, Li Q, et al. Nanotechnology: spinning continuous carbon nanotube yarns. Nature, 2002, 419: 801 doi: 10.1038/419801a
[93]
Randeniya L K, Bendavid A, Martin P J, et al. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity. Small, 2010, 6: 1806 doi: 10.1002/smll.201000493
[94]
Li Y L, Kinloch I A, Windle A H, et al. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004, 304: 276 doi: 10.1126/science.1094982
[95]
Zhang M, Atkinson K R, Naughman R H, et al. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science, 2004, 306: 1358 doi: 10.1126/science.1104276
[96]
Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber. Science, 2007, 318: 1892 doi: 10.1126/science.1147635
[97]
Peng H, Sun X, Cai F, et al. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat Nanotechnol, 2009, 4: 738 doi: 10.1038/nnano.2009.264
[98]
Pan S, Yang Z, Li H, et al. Efficient dye-sensitized photovoltaic wires based on an organic redox electrolyte. J Am Chem Soc, 2013, 135: 10622 doi: 10.1021/ja405012w
[99]
Foroughi J, Spinks G M, Wallace GG et al. Torsional carbon nanotube artificial muscles. Science, 2011, 334: 494 doi: 10.1126/science.1211220
[100]
Guo W, Liu C, Zhao F, et al. A novel electromechanical actuation mechanism of a carbon nanotube fiber. Adv Mater, 2012, 24: 5379 doi: 10.1002/adma.201201845
[101]
Wang K, Meng Q. High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013, 25: 1494 doi: 10.1002/adma.v25.10
[102]
Liu Y, Wang X, Qi K, et al. Functionalization of cotton with carbon nanotubes. J Mater Chem, 2008, 18: 3454 doi: 10.1039/b801849a
[103]
Shim B S, Chen W, Doty C, et al. A smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett, 2008, 8: 4151 doi: 10.1021/nl801495p
[104]
Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun, 2011, 2: 571 doi: 10.1038/ncomms1583
[105]
Dong Z, Jiang C, Cheng H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers. Adv Mater, 2012, 24: 1856 doi: 10.1002/adma.v24.14
[106]
Cheng H, Hu Y, Zhao F, et al. Moisture-activated torsional graphene-fiber motor. Adv Mater, 2014, 26: 2909 doi: 10.1002/adma.v26.18
[107]
Gopalsamy K, Xu Z, Zheng B, et al. Bismuth oxide nanotubes–graphene fiber-based flexible supercapacitors. Nanoscale, 2014, 6: 8595 doi: 10.1039/C4NR02615B
[108]
Lou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun, 2014, 5: 3754
[109]
Li X, Sun P, Fan L, et al. Multifunctional graphene woven fabrics. Sci Rep, 2012, 2: 395 doi: 10.1038/srep00395
[110]
Wang Y W, Yuen C W M, Leung M Y S, et al. Textile Asia. XXXV, 2007, 5: 27
[111]
Lee H J, Jeong S H. Bacteriostasis of nanosized colloidal silver on polyester nonwovens. Textile Res J, 2004, 74: 442 doi: 10.1177/004051750407400511
[112]
Mattana G, Cosseddu P, Fraboni B, et al. Organic electronics on natural cotton fibres. Org Electron, 2011, 12: 2033 doi: 10.1016/j.orgel.2011.09.001
[113]
Qian L. Nanotechnology in textiles: Recent developments and future prospects. AATCC Review, 2004, 4: 14
[114]
He J, Kunitake T, Nakao A. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chemistry of Materials, 2003, 15: 4401 doi: 10.1021/cm034720r
[115]
Seung W, Gupta M K, Lee K Y, et al. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano, 2015, 9: 3501 doi: 10.1021/nn507221f
[116]
Kim B H, Barnhart B S, Kwon J W. Electrostatic power generation using carbon-activated cotton thread on textile. Micro Nano Syst Lett, 2015, 3: 1 doi: 10.1186/s40486-015-0009-z
[117]
Huang Y, Hu H, Huang Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano, 2015, 9: 4766 doi: 10.1021/acsnano.5b00860
[118]
Hu L, Cui Y. Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci, 2012, 5: 6423 doi: 10.1039/c2ee02414d
[119]
Leijten J, Seo J, Yue K, et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater Sci Eng R, 2017, 119: 1
[120]
Barsan M M, Ghica M E, Brett C M. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta, 2015, 881: 1
[121]
Yadav S K, Chandra P, Goyal R N, et al. A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods. Anal Chim Acta, 2013, 762: 14 doi: 10.1016/j.aca.2012.11.037
[122]
Sakamoto H, Watanabe K, Koto A, et al. A bienzyme electrochemical biosensor for the detection of collagen l-hydroxyproline. Sensing and Bio-Sensing Research, 2015, 4: 37 doi: 10.1016/j.sbsr.2015.03.002
[123]
Linardy E M, Erskine S M, Lima N E, et al. EzyAmp signal amplification cascade enables isothermal detection of nucleic acid and protein targets. Biosens Bioelectron, 2016, 75: 59 doi: 10.1016/j.bios.2015.08.021
[124]
Zhu Y, Chandra P, Shim Y B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate. Anal Chem, 2013, 85: 1058 doi: 10.1021/ac302923k
[125]
Zhu Y, Chandra P, Ban C, Shim Y B. Electrochemical evaluation of binding affinity for aptamer selection using the microarray chip. Electroanalysis, 2012, 24: 1057 doi: 10.1002/elan.201100734
[126]
Chandra P, Noh H B, Shim Y B. Cancer cell detection based on the interaction between an anticancer drug and cell membrane components. Chem Commun, 2013, 49: 1900 doi: 10.1039/c2cc38235k
[127]
Kong B, Tang J, Wu Z. Bio-inspired porous antenna-likenanocube/nanowire heterostructure as ultra-sensitive cellularinterfaces. NPG Asia Mater, 2014, 6: e117
[128]
Kong B, Tang J, Wu Z. Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Mater, 2014, 6: e117 doi: 10.1038/nnano.2014.180
[129]
Seo J, Shin J Y, Leijten J, et al. High-throughput approaches for screening and analysis of cell behaviors. Biomaterials, 2018, 153: 85 doi: 10.1016/j.biomaterials.2017.06.022
[130]
Butcher A L, Offeddu G S, Oyen M L. Nanofibrous hydrogel compo-sites as mechanically robust tissue engineering scaffolds. Trends Biotechnol, 2014, 32: 564
[131]
Tamayol A, Akbari M, Annabi N, et al. Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv, 2013, 31: 669 doi: 10.1016/j.biotechadv.2012.11.007
[132]
Onoe H, Okitsu T, Itou A, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater, 2013, 12: 584 doi: 10.1038/nmat3606
[133]
Tamayol A, Najafabadi A H, Alikbarian B, et al. Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs. Adv Healthc Mater, 2015, 4: 2146 doi: 10.1002/adhm.201500492
[134]
Akbari M, Tamayol A, Laforte V, et al. Composite living fibers for creating tissue constructs using textile techniques. Adv Funct Mater, 2014, 24: 4060 doi: 10.1002/adfm.201303655
[135]
Lee J S, Lu Y, Bayer G S, et al. Controllable protein delivery from coated surgical sutures. J Mater Chem, 2010, 20: 8894 doi: 10.1039/c0jm01389g
[136]
Dickson G, Glenn D, Fraser B, et al. Orthopaedic tissue engineering and bone regeneration. Technol Health Care, 2007, 15: 57
[137]
Baguneid M S, Seifalian A M, Salacinski H J, et al. Tissue engineering of blood vessels. Br J Surg, 2006, 93: 282 doi: 10.1002/(ISSN)1365-2168
[138]
Nerem R M, Ensley A E. The tissue engineering of blood vessels and the heart. Am J Transplant, 2004, 4: 36 doi: 10.1111/ajt.2004.4.issue-s6
[139]
Schmidt C E, Leach J B. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng, 2003, 5: 293 doi: 10.1146/annurev.bioeng.5.011303.120731
[140]
Vishakha K, Jaehong L, Juree H, et al. Textile-based electronic components for energy applications: principles, problems, and perspective. Nanomaterials, 2015, 5: 1493 doi: 10.3390/nano5031493
[141]
Seo J, Lee H, Lee S, et al. Direct gravure printing of silicon nanowires using entropic attraction forces. Small, 2012, 8: 1614
[142]
Lee J B, Subramanian V. Organic transistors on fiber: a firststep towards electronic textiles. In Proceedings of IEEE InternationalElectron Devices Meeting (IEDM' 03), 2003: 8
[143]
Garnier F, Horowitz G, Peng X, et al. An all-organic " soft” thin film transistor with very high carrier mobility. Adv Mater, 1990, 2: 592 doi: 10.1002/(ISSN)1521-4095
[144]
Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett, 1986, 49: 1210 doi: 10.1063/1.97417
[145]
De Rossi D. Electronic textiles: a logical step. Nat Mater, 2007, 6: 328 doi: 10.1038/nmat1892
[146]
Maccioni M, Orgiu E, Cosseddu P. Towards the textile transistor: assembly and characterization of an organic field effect transistor with a cylindrical geometry. Appl Phys Lett, 2006, 89: 143515 doi: 10.1063/1.2357030
[147]
Holonyak N. News - first LED by the GE Engineer, Nick Holonyak. Available online: http://www.gelighting.com/ LightingWeb/emea/news-and-media/news/First-LED-by-the-GEengineerNick-Holonyak.jsp (accessed on 16 July 2015)
[148]
Tan J J, Zou C Q, Du S H, Tan J T. Simulation of MIMO channel characteristics for indoor visible light communication with LEDs. Opt Int J Light Electron Opt, 2014, 125: 44 doi: 10.1016/j.ijleo.2013.06.071
[149]
Yu H, Deng D, Chen L, et al. Luminescent properties of novel Ca2.89Mg0.11(PO4)2:Eu2+ single-phase white light-emitting phosphor for white LEDs. Ceram Int, 2015, 41: 3800 doi: 10.1016/j.ceramint.2014.11.055
[150]
Zhang Z, Wang J, Yin Y, et al. A novel green-to-yellow emitting phosphor: BaSi2SN2.67:Eu2+ for potential application in UV-LEDs. Opt Mater, 2013, 35: 1273 doi: 10.1016/j.optmat.2013.01.023
[151]
Park S, Choi I M, Kim S S, et al. A portable mid-range localization system using infrared LEDs for visually impaired people. Infrared Phys Technol, 2014, 67: 583 doi: 10.1016/j.infrared.2014.09.023
[152]
Lourenço M A, Homewood K P. Crystalline-silicon-based infra-red LEDs and routes to laser diodes. Thin Solid Films, 2011, 519: 8441 doi: 10.1016/j.tsf.2011.05.020
[153]
Zimmerman J. Technische Stickerei fur die Produktion innovativer Textilien. Forster Rohner Textile Innovations, Intelligente Textilien, Bayern Innovativ, Lindau, 2013
[154]
Wise K D. Integrated sensors: Interfacing electronics to a non-electronic world. Sens Actuators, 1981, 2: 229 doi: 10.1016/0250-6874(81)80043-1
[155]
Nese M, Seeberg B E. Silicon MEMS pressure sensors for aerospace applications. ASME Proc, 2006: 195
[156]
Lin L, Yun W. MEMS pressure sensors for aerospace applications. Proceedings of 1998 IEEE Aerospace Conference, 1998: 429
[157]
Mishra V, Singh N, Tiwari U, Kapur P. Fiber grating sensors in medicine: current and emerging applications. Sens Actuators Phys, 2011, 167: 279 doi: 10.1016/j.sna.2011.02.045
[158]
Girão P S, Ramos P M P, Postolache O, et al. Tactile sensors for robotic applications. Measurement, 2013, 46: 1257 doi: 10.1016/j.measurement.2012.11.015
[159]
Wu W, Liang L, Xu R, et al. The application of fiber grating sensor network in port-machinery monitoring. Opt Lasers Eng, 2010, 48: 427 doi: 10.1016/j.optlaseng.2009.09.006
[160]
Kinnunen M, Mian S Q, Oinas-Kukkonen H, et al. Wearable and mobile sensors connected to social media in human well-being applications. Telemat Inform, 2016, 33: 92 doi: 10.1016/j.tele.2015.06.008
[161]
Shimojo M, Namiki A, Ishikawa M. A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sens J, 2004, 4: 589 doi: 10.1109/JSEN.2004.833152
[162]
Lee J, Kwon H, Seo J, et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv Mater, 2015, 27: 2433 doi: 10.1002/adma.201500009
[163]
Matsuhisa N, Inoue D, Zalar P, et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature Mater, 2017, 16: 834 doi: 10.1038/nmat4904
[164]
Hammock M L, Chortos A, Tee B C K et al. The evolution of electronic skin (e-Skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997 doi: 10.1002/adma.201302240
[165]
Kim D H, Lu N, Ma R et al. Epidermal electronics. Science, 2011, 333: 838 doi: 10.1126/science.1206157
[166]
Najafabadi A H, Tamayol A, Annabi N et al. Biodegradable nanofibrous polymeric substrates for generating elastic and flexible electronics. Adv Mater, 2014, 26: 5823 doi: 10.1002/adma.v26.33
[167]
Sun J Y, Keplinger C, Whitesides G M, et al. Ionic skin. Adv Mater, 2014, 26: 7608 doi: 10.1002/adma.v26.45
[168]
Windmiller J R, Wang J. Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 2013, 25: 29 doi: 10.1002/elan.201200349
[169]
Jin Y, Seo J, Lee J S et al. Triboelectric nanogenerator accelerates highly efficient nonviral direct conversion and in vivo reprogramming of fibroblasts to functional neuronal cells. Adv Mater, 2016, 28: 7365
[170]
Carrilho E, Martinez A W, Whitesides G M. Understandingwax printing: a simple micropatterning process for paperbasedmicrofluidics. Anal Chem, 2009, 81: 7091
[171]
Li X, Tian J, Nguyen T et al. Paper-based microfluidic devices by plasma treatment. Anal Chem, 2008, 80: 9131 doi: 10.1021/ac801729t
[172]
Martinez A W, Phillips S T, Wiley B J, et al. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip, 2008, 8: 2146 doi: 10.1039/b811135a
[173]
Pooria M, Mohsen A, Kyle A A, et al. A toolkit of thread-based microfluidics, sensors, and electronics for 3D tissue embedding for medical diagnostics. Microsyst Nanoeng, 2016, 2: 16039 doi: 10.1038/micronano.2016.39
[174]
Yetisten A K. Nanotechnology in textiles. ACS Nano, 2016, 10: 3042 doi: 10.1021/acsnano.5b08176
[175]
Kunigunde C, Liesbeth V. Smart textiles: challenges and opportunities. J Appl Phys, 2012, 112: 091301 doi: 10.1063/1.4742728
[176]
Sawhney A P S, Condon B, Singh K V, et al. Modern applications of nanotechnology in textiles. Textile Res J, 2008, 78: 731 doi: 10.1177/0040517508091066
[177]
Paradiso R, Loriga G, Taccini N, et al. WEALTHY-a wearable healthcare system: new frontier on e-textile. J Telecommun Inform Technol, 2005, 4: 105
[178]
Jung S, Lauterbach C, Strasser M, et al. Enabling technologies for disappearing electronics in smart textiles. IEEE International Solid-State Circuits Conference, 2003, 1: 386 doi: 10.1109/ISSCC.2003.1234347
[179]
Catrysse M, Puers R, Hertleer C, et al. Towards the integration of textile sensors in a wireless monitoring suit. Sens Actuators A, 2004, 114: 302 doi: 10.1016/j.sna.2003.10.071
[180]
Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol, 2011, 6: 296 doi: 10.1038/nnano.2011.36
[181]
Webb R C, Bonifas A P, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater, 2013, 12: 938 doi: 10.1038/nmat3755
[182]
Jiang S, Zhang H, Song S, et al. Highly stretchable conductive fibers from few-walled carbon nanotubes coated on poly (m-phenylene isophthalamide) polymer core/shell structures. ACS Nano, 2015, 9: 6394 doi: 10.1021/acsnano.5b02010
[183]
Lee J H, Yoon H J, Kim T Y, et al. Micropatterned P (VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv Funct Mater, 2015, 25: 3203 doi: 10.1002/adfm.v25.21
[184]
Kim J, Lee M, Shim H J. Micropatterned stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun, 2014, 5: 11
[185]
Chen S, Lou Z, Chen D, et al. Wearable electronics: polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv Mater Technol, 2016, 1: 1600136 doi: 10.1002/admt.201600136
[186]
Sun Q, Seung W, Kim B J, et al. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater, 2015, 27: 3411 doi: 10.1002/adma.v27.22
[187]
Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320: 507 doi: 10.1126/science.1154367
[188]
Lee J H, Lee K Y, Gupta M K, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater, 2014, 26: 765 doi: 10.1002/adma.201303570
[189]
Xiao X, Yuan L, Zhong J, et al. High-strain sensors based on zno nanowire/polystyrene hybridized flexible films. Adv Mater, 2011, 23: 5440 doi: 10.1002/adma.201103406
[190]
Lou Z, Chen S, Wang L, et al. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23: 7 doi: 10.1016/j.nanoen.2016.02.053
[191]
Wang L, Li Y A. review for conductive polymer piezoresistive composites and a development of a compliant pressure transducer. IEEE Trans Instrum Meas, 2013, 62: 495 doi: 10.1109/TIM.2012.2215160
[192]
Schiøtz J, Di Tolla, F D, et al. Softening of nanocrystalline metals at very small grain sizes. Nature, 1998, 391: 561 doi: 10.1038/35328
[193]
Hammock M L, Chortos A, Tee B C K, et al. The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997 doi: 10.1002/adma.201302240
[194]
Chun S, Kim Y, Jin H, et al. A graphene force sensor with pressure-amplifying structure. Carbon, 2014, 78: 601 doi: 10.1016/j.carbon.2014.07.051
[195]
Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano, 2014, 8: 4689 doi: 10.1021/nn500441k
[196]
Zou D, Wang D, Chu Z, et al. Fiber-shaped flexible solar cells. Coord Chem Rev, 2010, 254: 1169 doi: 10.1016/j.ccr.2010.02.012
[197]
Fan X, Chu Z Z, Wang F Z, et al. Wire-shaped flexible dye-sensitized solar cells. Adv Mater, 2008, 20: 592 doi: 10.1002/(ISSN)1521-4095
[198]
Weintraub B, Wei Y, Wang Z L. Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angewandte Chemie, 2009, 48: 8981 doi: 10.1002/anie.v48:47
[199]
Yadav A, Pipe K P, Shtein M. Fiber-based flexible thermoelectric power generator. J Power Sources, 2008, 175: 909 doi: 10.1016/j.jpowsour.2007.09.096
[200]
Qin Y, Wang X, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging. Nature, 2008, 451: 809 doi: 10.1038/nature06601
[201]
Qin Y, Wang X, Wang Z L. Microfibre–nanowire hybrid structure for energy scavenging. Nature, 2009, 457: 340 doi: 10.1038/nature07628
[202]
Liu J, Namboothiry M A, Carroll D L. Optical geometries for fiber-based organic photovoltaics. Appl Phys Lett, 2007, 90: 133515 doi: 10.1063/1.2716864
[203]
Zeng W, Shu L, Li Q, et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater, 2014, 26: 5310 doi: 10.1002/adma.201400633
[204]
Zhong J, Zhang Y, Zhong Q, et al. Fiber-based generator for wearable electronics and mobile medication. ACS Nano, 2014, 8: 6273 doi: 10.1021/nn501732z
[205]
Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6: 2345 doi: 10.1039/c3nr05496a
[206]
Reneker D H, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology, 1996, 7: 216 doi: 10.1088/0957-4484/7/3/009
[207]
Subbiah T, Bhat G S, Tock R W, et al. Electrospinning of nanofibers. J Appl Polym Sci, 2005, 96: 557 doi: 10.1002/(ISSN)1097-4628
[208]
Agarwal S, Wendorff J H, Greiner A. Use of electrospinning technique for biomedical applications. Polymer, 2008, 49: 5603 doi: 10.1016/j.polymer.2008.09.014
[209]
Bhardwaj N, Kundu S C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010, 28: 325 doi: 10.1016/j.biotechadv.2010.01.004
[210]
Rogina A. Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl Surf Sci, 2014, 296: 221 doi: 10.1016/j.apsusc.2014.01.098
[211]
Persano L, Camposeo A, Tekmen C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review,. Macromol Mater Eng, 2013, 298: 504 doi: 10.1002/mame.v298.5
[212]
Pelipenko J, Kocbek P, Govedarica B, et al. The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. Eur J Pharm Biopharm, 2013, 84: 401 doi: 10.1016/j.ejpb.2012.09.009
[213]
Zamani M, Prabhakaran M P, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomed, 2013, 8: 1997
[214]
Zeng J, Yang L, Liang Q, et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Contr Release, 2005, 105: 43 doi: 10.1016/j.jconrel.2005.02.024
[215]
Liu Y, Meng C, Zhang A P, et al. Compact microfiber Bragg gratings with high-index contrast. Opt Lett, 2011, 36: 3115 doi: 10.1364/OL.36.003115
[216]
Ran Y, Tan Y N, Sun L P, et al. 193 nm excimer laser inscribed Bragg gratings in microfibers for refractive index sensing. Opt Express, 2011, 19: 18577 doi: 10.1364/OE.19.018577
[217]
Kou J L, Qiu S J, Xu F, et al. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe. Opt Express, 2011, 19: 18452 doi: 10.1364/OE.19.018452
[218]
Wieduwilt T, Brückner S, Bartelt H. High force measurement sensitivity with fiber Bragg gratings fabricated in uniform-waist fiber tapers. Meas Sci Technol, 2011, 22: 075201 doi: 10.1088/0957-0233/22/7/075201
[219]
Wang X F, Jiang K, Shen G Z. Flexible fiber energy storage and integrated devices: recent progress and perspectives. Mater Today, 2015, 18: 265 doi: 10.1016/j.mattod.2015.01.002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 7044 Times PDF downloads: 122 Times Cited by: 0 Times

    History

    Received: 19 September 2017 Revised: 03 November 2017 Online: Accepted Manuscript: 27 December 2017Published: 01 January 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bichitra Nanda Sahoo, Byungwoo Choi, Jungmok Seo, Taeyoon Lee. Hybrid functional microfibers for textile electronics and biosensors[J]. Journal of Semiconductors, 2018, 39(1): 011009. doi: 10.1088/1674-4926/39/1/011009 B N Sahoo, B Choi, J Seo, T Lee, Hybrid functional microfibers for textile electronics and biosensors[J]. J. Semicond., 2018, 39(1): 011009. doi: 10.1088/1674-4926/39/1/011009.Export: BibTex EndNote
      Citation:
      Bichitra Nanda Sahoo, Byungwoo Choi, Jungmok Seo, Taeyoon Lee. Hybrid functional microfibers for textile electronics and biosensors[J]. Journal of Semiconductors, 2018, 39(1): 011009. doi: 10.1088/1674-4926/39/1/011009

      B N Sahoo, B Choi, J Seo, T Lee, Hybrid functional microfibers for textile electronics and biosensors[J]. J. Semicond., 2018, 39(1): 011009. doi: 10.1088/1674-4926/39/1/011009.
      Export: BibTex EndNote

      Hybrid functional microfibers for textile electronics and biosensors

      doi: 10.1088/1674-4926/39/1/011009
      Funds:

      Project supported by the Priority Research Centers Program (No. 2012-0006689) through the National Research Foundation (NRF) of Korea funded by the Ministry of Education, Science and Technology (MEST) and the R&D program of MOTIE/KEIT [10064081, Development of fiber-based flexible multimodal pressure sensor and algorithm for gesture/posture-recognizable wearable devices]. We gratefully acknowledge partial support from the National Research Foundation of Korea (No. NRF-2017K2A9A2A06013377, NRF-2017M3A7B4049466) and the Yonsei University Future-leading Research Initiative and Implantable artificial electronic skin for an ubiquitous healthcare system of 2016-12-0050. This work is also supported by KIST Project (Nos. 2E26900, 2E27630). Dr. Seo was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2016R1A6A3A03006491).

      More Information
      • Corresponding author: Email: taeyoon.lee@yonsei.ac.kr
      • Received Date: 2017-09-19
      • Revised Date: 2017-11-03
      • Published Date: 2018-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return