SEMICONDUCTOR INTEGRATED CIRCUITS

A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18 μm CMOS technology

Xurui Mao, Beiju Huang and Hongda Chen

+ Author Affiliations

 Corresponding author: Huang Beiju, Email:bjhuang@semi.ac.cn

PDF

Abstract: A 900 MHz fractional-N synthesizer is designed for the UHF transceiver. The VCO with a 4 bits capacitor bank covers 823-1061 MHz that implements 16 (24) sub-bands. A 7/8 dual-modulus prescaler is implemented with a phase-switching circuit and high-speed flip-flops, which are composed of source coupled logic. The proposed synthesizer phase-locked loop is demonstrated with a 50 kHz band width by a low 12.95 MHz reference clock, and offers a better phase noise and band width tradeoff. To reduce the out-band phase noise, a 4-levels 3-order single-loop sigma-delta modulator is applied. When its relative frequency resolution is settled to 10-6, the testing results show that the phase noises are -120.6 dBc/Hz at 1 MHz and -95.0 dBc/Hz at 100 kHz. The chip is 2.1 mm2 in UMC 0.18 μm CMOS. The power is 36 mW at a 1.8 V supply.

Key words: UHF RFID readerfrequency synthesizerVCO7/8 dual-modulus prescalerΔ Σ modulator



[1]
Wu T, Hanumolu P K, Mayaram K, et al. Method for constant loop bandwith in LC-VCO PLL frequency synthesizers. IEEE J Solid-State Circuits, 2009, 44(2):427 doi: 10.1109/JSSC.2008.2010792
[2]
Lo C, Luong H. A 1.5-V 900-MHz monolithic CMOS fast-switching frequency synthesizer for wireless applications. IEEE J Solid-State Circuits, 2002, 37(4):459 doi: 10.1109/4.991384
[3]
Shin J, Shin H. A fast and high-precision VCO frequency calibration technique for wideband Δ Σ fractional-N frequency synthesizers. IEEE Trans Circuits Syst I, 2010, 57(7):1573 doi: 10.1109/TCSI.2009.2036057
[4]
Nonis R, Dalt N D, Palestri P, et al. Modeling, design and characterization of a new low-jitter analog dual tuning LC-VCO PLL architecture. IEEE J Solid-State Circuits, 2005, 40(6):1303 doi: 10.1109/JSSC.2005.848037
[5]
Nakamura T, Masuda T, Nobuhiro, et al. A wide-tuning-range VCO with small VCO-gain fluctuation for multi-band WCDMA RFIC. Proceedings 32nd European Solid-State Circuits Conference, 2006:448 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4099800
[6]
Ding Y, Kenneth K O. A 21 GHz 8 modulus prescaler and a 20 GHz phase locked loop fabricated in 130 nm CMOS. IEEE J Solid-State Circuits, 2007, 42(2):1240 http://ieeexplore.ieee.org/document/4214963/
[7]
Yuan J, Svensson C. High speed CMOS circuit technique. IEEE J Solid-State Circuits, 1989, 24(2):62 http://ieeexplore.ieee.org/document/16303/
[8]
Chang B, Park J, Kim W. A 1.2 GHz CMOS dual modulus prescaler using new dynamic d-type flip-flops. IEEE J Solid-State Circuits, 1996, 31(5):749 doi: 10.1109/4.509860
[9]
Muer B D, Steyaert M. A CMOS monolithic Δ Σ -controlled fractional-N frequency synthesizer for DCS-1800. IEEE J Solid-State Circuits, 2002, 37(7):835 doi: 10.1109/JSSC.2002.1015680
[10]
Muer B D, Steyaert M. On the analysis of delta sigma fractiona-N frequency synthesizers for high-spectral purity. IEEE Trans Circuits Syst Ⅱ:Analog and Digital Signal Processing, 2003, 50(11):784 doi: 10.1109/TCSII.2003.819119
[11]
Lee H I, Cho J K, Lee K S, et al. (2004). A Δ Σ fractional-N frequency synthesizer using a wide-band integrated VCO and a fast AFC technique for GSM/GPRS/WCDMA applications. IEEE J Solid-State Circuits, 2004, 39(7):1164 doi: 10.1109/JSSC.2004.829938
[12]
Wang W T, Lou S Z, Chui K, et al. A single-chip UHF RFID reader in 0.18μm CMOS process. IEEE J Solid-State Circuits, 2008, 43(8):1741 doi: 10.1109/JSSC.2008.925601
[13]
Kwon I, Bang H, Choi K, et al. A single-chip CMOS transceiver for UHF mobile RFID reader. IEEE J Solid-State Circuits, 2008, 43(3):216 http://ieeexplore.ieee.org/document/4456779/
[14]
Xie Weifu, Li Yongming, Zhang Chun, et al. CMOS implementation of an RF PLL synthesizer for use in RFID systems. Journal of Semiconductors, 2008, 29(8):1595 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=07092602&journal_id=bdtxbcn
[15]
Shin J, Shin H. A 1.9-3.8 GHz Δ Σ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J Solid-State Circuits, 2012, 47(3):665 doi: 10.1109/JSSC.2011.2179733
[16]
Yan D L, Bansal A, Zhao B, et al. A low power, 900 MHz fractional-N synthesizer with quadrature outputs in 0. 13μm CMOS. IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2013: 1
Fig. 1.  Structure of delta-sigma fractional frequency synthesizer.

Fig. 2.  Multi-band VCO

Fig. 3.  Phase noise of VCO

Fig. 4.  Frequency tuning curves of VCO

Fig. 5.  Block diagram of prescaler

Fig. 6.  (a) SCML latch. (b) SCML divide-by-2.

Fig. 7.  Simulation waveforms of prescaler.

Fig. 8.  Single-loop sigma-delta modulator.

Fig. 9.  Structure of modulator.

Fig. 10.  Simulation waveforms of modulator.

Fig. 11.  Establishment of VCO's control voltage.

Fig. 12.  Phase noise of PLL and its each module.

Fig. 13.  Chip micrograph

Fig. 14.  Frequency spectrum and phase noise @ 100 kHz.

Fig. 15.  Frequency spectrum and phase noise at 1 MHz

Table 1.   Performance summary and comparison

[1]
Wu T, Hanumolu P K, Mayaram K, et al. Method for constant loop bandwith in LC-VCO PLL frequency synthesizers. IEEE J Solid-State Circuits, 2009, 44(2):427 doi: 10.1109/JSSC.2008.2010792
[2]
Lo C, Luong H. A 1.5-V 900-MHz monolithic CMOS fast-switching frequency synthesizer for wireless applications. IEEE J Solid-State Circuits, 2002, 37(4):459 doi: 10.1109/4.991384
[3]
Shin J, Shin H. A fast and high-precision VCO frequency calibration technique for wideband Δ Σ fractional-N frequency synthesizers. IEEE Trans Circuits Syst I, 2010, 57(7):1573 doi: 10.1109/TCSI.2009.2036057
[4]
Nonis R, Dalt N D, Palestri P, et al. Modeling, design and characterization of a new low-jitter analog dual tuning LC-VCO PLL architecture. IEEE J Solid-State Circuits, 2005, 40(6):1303 doi: 10.1109/JSSC.2005.848037
[5]
Nakamura T, Masuda T, Nobuhiro, et al. A wide-tuning-range VCO with small VCO-gain fluctuation for multi-band WCDMA RFIC. Proceedings 32nd European Solid-State Circuits Conference, 2006:448 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4099800
[6]
Ding Y, Kenneth K O. A 21 GHz 8 modulus prescaler and a 20 GHz phase locked loop fabricated in 130 nm CMOS. IEEE J Solid-State Circuits, 2007, 42(2):1240 http://ieeexplore.ieee.org/document/4214963/
[7]
Yuan J, Svensson C. High speed CMOS circuit technique. IEEE J Solid-State Circuits, 1989, 24(2):62 http://ieeexplore.ieee.org/document/16303/
[8]
Chang B, Park J, Kim W. A 1.2 GHz CMOS dual modulus prescaler using new dynamic d-type flip-flops. IEEE J Solid-State Circuits, 1996, 31(5):749 doi: 10.1109/4.509860
[9]
Muer B D, Steyaert M. A CMOS monolithic Δ Σ -controlled fractional-N frequency synthesizer for DCS-1800. IEEE J Solid-State Circuits, 2002, 37(7):835 doi: 10.1109/JSSC.2002.1015680
[10]
Muer B D, Steyaert M. On the analysis of delta sigma fractiona-N frequency synthesizers for high-spectral purity. IEEE Trans Circuits Syst Ⅱ:Analog and Digital Signal Processing, 2003, 50(11):784 doi: 10.1109/TCSII.2003.819119
[11]
Lee H I, Cho J K, Lee K S, et al. (2004). A Δ Σ fractional-N frequency synthesizer using a wide-band integrated VCO and a fast AFC technique for GSM/GPRS/WCDMA applications. IEEE J Solid-State Circuits, 2004, 39(7):1164 doi: 10.1109/JSSC.2004.829938
[12]
Wang W T, Lou S Z, Chui K, et al. A single-chip UHF RFID reader in 0.18μm CMOS process. IEEE J Solid-State Circuits, 2008, 43(8):1741 doi: 10.1109/JSSC.2008.925601
[13]
Kwon I, Bang H, Choi K, et al. A single-chip CMOS transceiver for UHF mobile RFID reader. IEEE J Solid-State Circuits, 2008, 43(3):216 http://ieeexplore.ieee.org/document/4456779/
[14]
Xie Weifu, Li Yongming, Zhang Chun, et al. CMOS implementation of an RF PLL synthesizer for use in RFID systems. Journal of Semiconductors, 2008, 29(8):1595 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=07092602&journal_id=bdtxbcn
[15]
Shin J, Shin H. A 1.9-3.8 GHz Δ Σ fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency. IEEE J Solid-State Circuits, 2012, 47(3):665 doi: 10.1109/JSSC.2011.2179733
[16]
Yan D L, Bansal A, Zhao B, et al. A low power, 900 MHz fractional-N synthesizer with quadrature outputs in 0. 13μm CMOS. IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2013: 1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2107 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 19 May 2014 Revised: 23 July 2014 Online: Published: 01 December 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xurui Mao, Beiju Huang, Hongda Chen. A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18 μm CMOS technology[J]. Journal of Semiconductors, 2014, 35(12): 125007. doi: 10.1088/1674-4926/35/12/125007 X R Mao, B J Huang, H D Chen. A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18 μm CMOS technology[J]. J. Semicond., 2014, 35(12): 125007. doi: 10.1088/1674-4926/35/12/125007.Export: BibTex EndNote
      Citation:
      Xurui Mao, Beiju Huang, Hongda Chen. A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18 μm CMOS technology[J]. Journal of Semiconductors, 2014, 35(12): 125007. doi: 10.1088/1674-4926/35/12/125007

      X R Mao, B J Huang, H D Chen. A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18 μm CMOS technology[J]. J. Semicond., 2014, 35(12): 125007. doi: 10.1088/1674-4926/35/12/125007.
      Export: BibTex EndNote

      A 900 MHz fractional-N synthesizer for UHF transceiver in 0.18 μm CMOS technology

      doi: 10.1088/1674-4926/35/12/125007
      More Information
      • Corresponding author: Huang Beiju, Email:bjhuang@semi.ac.cn
      • Received Date: 2014-05-19
      • Revised Date: 2014-07-23
      • Published Date: 2014-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return