SEMICONDUCTOR INTEGRATED CIRCUITS

A high power active circulator using GaN MMIC power amplifiers

Liming Gu1, Wenquan Che1, , Fan-Hsiu Huang2 and Hsien-Chin Chiu2

+ Author Affiliations

 Corresponding author: Che Wenquan, Email:xie.liangbo@hotmail.com

PDF

Abstract: This paper presents a 2.4 GHz hybrid integrated active circulator consisting of three power amplifiers and three PCB-based Wilkinson power dividers. The power amplifiers were designed and fabricated in a standard 0.35-μm AlGaN/GaN HEMT technology, and combined with three traditional power dividers on FR4 using bonding wires. Due to the isolation of power dividers, the isolation between three ports is achieved; meanwhile, due to the unidirectional characteristics of the power amplifiers, the nonreciprocal transfer characteristic of the circulator is realized. The measured insertion gain of the proposed active circulator is about 2-2.7 dB at the center frequency of 2.4 GHz, the isolation between three ports is better than 20 dB over 1.2-3.4 GHz, and the output power of the designed active circulator achieves up to 20.1-21.2 dBm at the center frequency.

Key words: hybridgallium nitride (GaN)monolithic microwave integrated circuit (MMIC)active circulatorpower amplifierpower divider



[1]
Palomba M, Bentini A, Palombini D, et al. A novel hybrid active quasi-circulator for L-band applications. International Conference on Microwave, Radar and Wireless Communication, Warsaw, Poland, 2012:41 http://ieeexplore.ieee.org/document/6233533/
[2]
Lax B, Button K J. Microwave ferrites and ferromagnetic. McGraw-Hill, 1962 http://ci.nii.ac.jp/ncid/BA1136165X
[3]
Tanaka S, Shimomura N, Ohtake K. Active circulators-the realization of circulators using transistors. Proc IEEE, 1965, 53:260 doi: 10.1109/PROC.1965.3683
[4]
Ayasli Y. Field effect transistor circulators. IEEE Trans Magn, 1989, 25(5):3242 doi: 10.1109/20.42266
[5]
Berg M, Hackbarth T, Maile B E, et al. Active circulator MMIC in CPW technology using quarter micron InAlAs/InGaAs/InP HEFTs. Proc 8th Int Indium Phosphide Rel Mater Conf, 1996:68 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491936
[6]
Cryan M J, Hall P S. An integrated active circulator antenna. IEEE Microw Guided Wave Lett, 1997, 7(7):190 doi: 10.1109/75.594860
[7]
Shin S C, Huang J Y, Lin K Y, et al. A 1.5-9.6 GHz monolithic active quasi-circulator in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2008, 18(12):797 doi: 10.1109/LMWC.2008.2007703
[8]
Cheung S, Halloran T, Weedon W, et al. Active quasi circulators using quadrature hybrids for simultaneous transmit and receive. IEEE MTT-S Int Microw Symp Dig, 2009:381 http://ieeexplore.ieee.org/document/5165713/
[9]
Wu H S, Wang C W, Tzuang C K C. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 2010, 58(8):2084 doi: 10.1109/TMTT.2010.2052405
[10]
Chang C H, Lo Y T, Kiang J F. A 30 GHz active quasi-circulator with current-reuse technique in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2010, 20(12):693 doi: 10.1109/LMWC.2010.2079321
[11]
Huang D, Kuo J, Wang H. A 24-GHz low power and high isolation active quasi-circulator. IEEE MTT-S International Microwave Symposium Digest, 2012:1 http://ieeexplore.ieee.org/document/6258379/
[12]
Kawai T, Toyoda S. 20 GHz band active circulator utilizing fin-line. International Conference on Infrared, Millimeter, and Terahertz Waves, 2012:1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6380409
[13]
Liu B, Feng Z. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier. Journal of Semiconductors, 2013, 34(4):044006 doi: 10.1088/1674-4926/34/4/044006
[14]
Pozar D M. Microwave engineering. 3rd ed. New York:Wiley, 2005
[15]
Gu L, Feng W, Che W, et al. Investigations on bonding wire array for interconnect of RFICs. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012:1 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6230406
Fig. 1.  Configuration of the proposed active circulator.

Fig. 2.  Traditional Wilkinson power divider.

Fig. 3.  The simulation performances of the designed power divider.

Fig. 4.  The schematic of the designed GaN MMIC power amplifier.

Fig. 5.  The micrograph of the designed GaN MMIC power amplifier (1.34 $\times $ 0.49 mm$^{2})$.

Fig. 6.  Small-signal performances of the GaN MMIC power amplifier.

Fig. 7.  The output of the designed GaN MMIC power amplifier. ($V_{\rm DD}$ = 7 V, $f$ = 2.4 GHz).

Fig. 8.  Photograph of the designed active circulator.

Fig. 9.  Measured $S$ parameters of the designed hybrid active circulator. (a) Insertion gain and return loss. (b) Isolation.

Fig. 10.  Measured output power performances of the active circulator. ($V_{\rm DD}$ $=$ 7 V, $f$ $=$ 2.4 GHz).

Table 1.   Performance comparison of active circulators.

[1]
Palomba M, Bentini A, Palombini D, et al. A novel hybrid active quasi-circulator for L-band applications. International Conference on Microwave, Radar and Wireless Communication, Warsaw, Poland, 2012:41 http://ieeexplore.ieee.org/document/6233533/
[2]
Lax B, Button K J. Microwave ferrites and ferromagnetic. McGraw-Hill, 1962 http://ci.nii.ac.jp/ncid/BA1136165X
[3]
Tanaka S, Shimomura N, Ohtake K. Active circulators-the realization of circulators using transistors. Proc IEEE, 1965, 53:260 doi: 10.1109/PROC.1965.3683
[4]
Ayasli Y. Field effect transistor circulators. IEEE Trans Magn, 1989, 25(5):3242 doi: 10.1109/20.42266
[5]
Berg M, Hackbarth T, Maile B E, et al. Active circulator MMIC in CPW technology using quarter micron InAlAs/InGaAs/InP HEFTs. Proc 8th Int Indium Phosphide Rel Mater Conf, 1996:68 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=491936
[6]
Cryan M J, Hall P S. An integrated active circulator antenna. IEEE Microw Guided Wave Lett, 1997, 7(7):190 doi: 10.1109/75.594860
[7]
Shin S C, Huang J Y, Lin K Y, et al. A 1.5-9.6 GHz monolithic active quasi-circulator in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2008, 18(12):797 doi: 10.1109/LMWC.2008.2007703
[8]
Cheung S, Halloran T, Weedon W, et al. Active quasi circulators using quadrature hybrids for simultaneous transmit and receive. IEEE MTT-S Int Microw Symp Dig, 2009:381 http://ieeexplore.ieee.org/document/5165713/
[9]
Wu H S, Wang C W, Tzuang C K C. CMOS active quasi-circulator with dual transmission gains incorporating feedforward technique at K-band. IEEE Trans Microw Theory Tech, 2010, 58(8):2084 doi: 10.1109/TMTT.2010.2052405
[10]
Chang C H, Lo Y T, Kiang J F. A 30 GHz active quasi-circulator with current-reuse technique in 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2010, 20(12):693 doi: 10.1109/LMWC.2010.2079321
[11]
Huang D, Kuo J, Wang H. A 24-GHz low power and high isolation active quasi-circulator. IEEE MTT-S International Microwave Symposium Digest, 2012:1 http://ieeexplore.ieee.org/document/6258379/
[12]
Kawai T, Toyoda S. 20 GHz band active circulator utilizing fin-line. International Conference on Infrared, Millimeter, and Terahertz Waves, 2012:1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6380409
[13]
Liu B, Feng Z. An extrinsic fmax > 100 GHz InAlN/GaN HEMT with AlGaN back barrier. Journal of Semiconductors, 2013, 34(4):044006 doi: 10.1088/1674-4926/34/4/044006
[14]
Pozar D M. Microwave engineering. 3rd ed. New York:Wiley, 2005
[15]
Gu L, Feng W, Che W, et al. Investigations on bonding wire array for interconnect of RFICs. International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2012:1 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6230406
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3158 Times PDF downloads: 40 Times Cited by: 0 Times

    History

    Received: 09 April 2014 Revised: 23 May 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liming Gu, Wenquan Che, Fan-Hsiu Huang, Hsien-Chin Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. Journal of Semiconductors, 2014, 35(11): 115003. doi: 10.1088/1674-4926/35/11/115003 L M Gu, W Q Che, F H Huang, H C Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. J. Semicond., 2014, 35(11): 115003. doi:  10.1088/1674-4926/35/11/115003.Export: BibTex EndNote
      Citation:
      Liming Gu, Wenquan Che, Fan-Hsiu Huang, Hsien-Chin Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. Journal of Semiconductors, 2014, 35(11): 115003. doi: 10.1088/1674-4926/35/11/115003

      L M Gu, W Q Che, F H Huang, H C Chiu. A high power active circulator using GaN MMIC power amplifiers[J]. J. Semicond., 2014, 35(11): 115003. doi:  10.1088/1674-4926/35/11/115003.
      Export: BibTex EndNote

      A high power active circulator using GaN MMIC power amplifiers

      doi: 10.1088/1674-4926/35/11/115003
      Funds:

      Project supported by the National Science Foundation for Distinguished Young Scholars of China (No. 61225001)

      the National Science Foundation for Distinguished Young Scholars of China 61225001

      More Information
      • Corresponding author: Che Wenquan, Email:xie.liangbo@hotmail.com
      • Received Date: 2014-04-09
      • Revised Date: 2014-05-23
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return