SEMICONDUCTOR INTEGRATED CIRCUITS

A low standby-power fast carbon nanotube ternary SRAM cell with improved stability

Gang Li1, Pengjun Wang1, 2, , Yaopeng Kang1 and Yuejun Zhang1

+ Author Affiliations

 Corresponding author: Pengjun Wang, Email: wangpengjun@nbu.edu.cn

PDF

Turn off MathJax

Abstract: Power dissipation, speed and stability are the most important parameters for multiple-valued SRAM design. To reduce the power consumption and further improve the performance of the ternary SRAM cell, we propose a low standby-power fast ternary SRAM cell based on carbon nanotube field effect transistors (CNFETs). The performance is simulated in terms of three criteria including standby-power, delay (write and read) and stability (RSNM). Compared to the novel ternary SRAM cell, our results show that the average standby-power, write and read delay of the proposed cell are reduced by 78.1%, 39.6% and 58.2%, respectively. In addition, the RSNM under process variations is 2.01× and 1.95× of the conventional and novel ternary SRAM cells, respectively.

Key words: CNFETsternary SRAM celllow standby-powerhigh stability



[1]
Cho G, Lombardi F. Design and process variation analysis of CNTFET-based ternary memory cells. Integr VLSI J, 2011, 54(C): 97
[2]
Kamar Z, Nepal K. Noise margin-optimized ternary CMOS SRAM delay and sizing characteristics. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2010: 801
[3]
Zhang Y J, Wang P J, Xiong B Y, et al. Design of a high information-density multiple valued 2-read 1-write register file. IEICE Electron Express, 2012, 9(11): 958 doi: 10.1587/elex.9.958
[4]
Appenzeller J. Carbon nanotubes for high-performance electronics—progress and prospect. Proc IEEE, 2008, 96(2): 201 doi: 10.1109/JPROC.2007.911051
[5]
Lin Y M, Appenzeller J, Knoch J, et al. High performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans Nanotechnol, 2005, 4(5): 481 doi: 10.1109/TNANO.2005.851427
[6]
Qiu C, Zhang Z, Xiao M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355(6322): 271 doi: 10.1126/science.aaj1628
[7]
You K, Nepal K. Design of a ternary static memory cell using carbon nanotube-based transistors. IET Micro & Nano Lett, 2011, 6(6): 381
[8]
Lin S, Kim Y B, Lombardi F. Design of a ternary memory cell using CNTFETs. IEEE Trans Nanotechnol, 2012, 11(5): 1019 doi: 10.1109/TNANO.2012.2211614
[9]
Ghanatghestani M M, Pedram H, Ghavami B. Design of a low-standby power and high-speed ternary memory cell based on carbon nanotube field-effect transistor. J Comput Theor Nanosci, 2015, 12(12): 5457 doi: 10.1166/jctn.2015.4546
[10]
Ebrahim A, Abdolreza D. A novel design of low power and high read stability ternary SRAM (T-SRAM), memory based on the modified gate diffusion input (m-GDI) method in nanotechnology. Microelectron J, 2016, 58: 44 doi: 10.1016/j.mejo.2016.10.009
[11]
Shin K, Choi W, Park J. Half-select free and bit-line sharing 9T SRAM for reliable supply voltage scaling. IEEE Trans Circ Syst I, 2017, 64(8): 2036
[12]
Deng J, Wong H S P. A compact SPICE model for carbon-nanotube field effect transistors including nonidealities and its application-part II: model of the intrinsic channel region. IEEE Trans Electron Devices, 2007, 54(12): 3186 doi: 10.1109/TED.2007.909030
[13]
Tabrizchi S, Azimi N, Navi K. A novel ternary half adder and multiplier based on carbon nanotube field effect transistors. Front Inform Technol Electron Eng, 2017, 18(3): 423 doi: 10.1631/FITEE.1500366
[14]
Prabhu C M R, Singh A K. Low-power fast (LPF) SRAM cell for write/read operation. IEICE Electron Express, 2011, 8(18): 1473 doi: 10.1587/elex.8.1473
Fig. 1.  Schematic diagrams of a typical carbon nanotube transistor. (a) Cross sectional view. (b) Top view.

Fig. 2.  (Color online) CNFET based ternary SRAM cells. (a) Conventional ternary SRAM cell[8]. (b) Novel ternary SRAM cell[9].

Fig. 3.  (Color online) Proposed ternary SRAM cell. (a) Structure and its transistor level implementation. (b) Transistors operating status when storing logic ‘0’, ‘2’ and ‘1’ (black and gray represent ON and OFF, respectively).

Fig. 4.  (Color online) (a) Write and (b) read operation of the proposed LSF ternary memory cell.

Fig. 5.  Delay and standby-power of the proposed LSF ternary SRAM cell and the other two ternary SRAM cells. (a) Write delay. (b) Read delay. (c) Standby-power.

Fig. 6.  (Color online) RSNM under process variations. (a) Conventional ternary SRAM cell[8]. (b) Novel ternary SRAM cell[9]. (c) Proposed LSF ternary SRAM cell.

Table 1.   Logic symbols and truth table of the 1T-2B and 2B-1T.

Logic symbol 1T-2B 2B-1T
Ternary Binary Binary Ternary
Voltage level (V) Logic level Q3 Q1 Q2 Q1 Q2 Q3
0 0 0 2 2 2 2 0
0.45 1 1 0 2 0 2 1
0.9 2 2 0 0 0 0 2
DownLoad: CSV

Table 2.   The important device parameters of the CNFET model.

Parameter Value
Physical channel length 32 nm
Mean free path in the intrinsic CNT 100 nm
Length of doped CNT drain-side region 32 nm
Length of doped CNT source-side region 32 nm
Mean free path in p+/n+ doped CNT 15 nm
Distance between the lefts of two adjacent CNTs within the same gate ≤ 30 nm
Sub-lithographic pitch 4 nm
Thickness of high-k top gate dielectric 4 nm
Dielectric constant of high-k top gate dielectric material (HfO2) 16
Dielectric constant of substrate (SiO2) 4
Coupling cap between the channel region and the substrate (SiO2) 40 aF/μm
Fermi level of the doped S/D CNT 6 eV
Work function of S/D metal contacts 4.6 eV
CNT work function 4.5 eV
DownLoad: CSV

Table 3.   Simulation results and comparisons with other related works.

Parameter Ref. [14] Ref. [2] Ref. [8] Ref. [9] Proposed
Technology (nm) CMOS 120 CMOS 180 CNFET 32 CNFET 32 CNFET 32
Logic type Binary Binary Ternary Ternary Ternary Ternary
Supply voltage (V) 1.2 1.2 1.8 0.9 0.9 0.9
Number of transistors 6 11 10 18 18 18
Write delay (ps) ‘0’→‘1’ × × 840 113.10 8.49 5.19
‘0’→‘2’ 111 60 650 20.64 5.94 2.05
‘1’→‘0’ × × 120 7.19 3.39 2.44
‘1’→‘2’ × × 570 5.85 3.14 1.99
‘2’→‘0’ 111 60 160 10.90 4.54 2.78
‘2’→‘1’ × × 1230 95.91 9.82 6.89
Avg. 111 60 595 42.27 5.89 3.56
Read delay (ps) ‘0’ 80 85 200 127.60 79.75 30.20
‘1’ × × 3900 39.00 35.85 19.38
‘2’ 80 14 165 135.30 74.25 30.10
Avg. 80 49.5 14 212 100.63 63.28 26.44
Standby-power (nW) ‘0’ N/A N/A N/A 0.3515 0.1359 0.2334
‘1’ N/A N/A N/A 828.7 1495.5 326.9
‘2’ N/A N/A N/A 0.5104 0.2425 0.4538
Avg. N/A N/A N/A 276.5 498.6 109.2
RSNM (mV) 195* 395* N/A 101.8 105.1 204.5
Read-disturb problem Yes No Yes No Yes No
Half-select problem Yes Yes Yes Yes Yes No
×−Not exist; N/A−Not available; * Simulated without process variations.
DownLoad: CSV
[1]
Cho G, Lombardi F. Design and process variation analysis of CNTFET-based ternary memory cells. Integr VLSI J, 2011, 54(C): 97
[2]
Kamar Z, Nepal K. Noise margin-optimized ternary CMOS SRAM delay and sizing characteristics. IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2010: 801
[3]
Zhang Y J, Wang P J, Xiong B Y, et al. Design of a high information-density multiple valued 2-read 1-write register file. IEICE Electron Express, 2012, 9(11): 958 doi: 10.1587/elex.9.958
[4]
Appenzeller J. Carbon nanotubes for high-performance electronics—progress and prospect. Proc IEEE, 2008, 96(2): 201 doi: 10.1109/JPROC.2007.911051
[5]
Lin Y M, Appenzeller J, Knoch J, et al. High performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans Nanotechnol, 2005, 4(5): 481 doi: 10.1109/TNANO.2005.851427
[6]
Qiu C, Zhang Z, Xiao M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355(6322): 271 doi: 10.1126/science.aaj1628
[7]
You K, Nepal K. Design of a ternary static memory cell using carbon nanotube-based transistors. IET Micro & Nano Lett, 2011, 6(6): 381
[8]
Lin S, Kim Y B, Lombardi F. Design of a ternary memory cell using CNTFETs. IEEE Trans Nanotechnol, 2012, 11(5): 1019 doi: 10.1109/TNANO.2012.2211614
[9]
Ghanatghestani M M, Pedram H, Ghavami B. Design of a low-standby power and high-speed ternary memory cell based on carbon nanotube field-effect transistor. J Comput Theor Nanosci, 2015, 12(12): 5457 doi: 10.1166/jctn.2015.4546
[10]
Ebrahim A, Abdolreza D. A novel design of low power and high read stability ternary SRAM (T-SRAM), memory based on the modified gate diffusion input (m-GDI) method in nanotechnology. Microelectron J, 2016, 58: 44 doi: 10.1016/j.mejo.2016.10.009
[11]
Shin K, Choi W, Park J. Half-select free and bit-line sharing 9T SRAM for reliable supply voltage scaling. IEEE Trans Circ Syst I, 2017, 64(8): 2036
[12]
Deng J, Wong H S P. A compact SPICE model for carbon-nanotube field effect transistors including nonidealities and its application-part II: model of the intrinsic channel region. IEEE Trans Electron Devices, 2007, 54(12): 3186 doi: 10.1109/TED.2007.909030
[13]
Tabrizchi S, Azimi N, Navi K. A novel ternary half adder and multiplier based on carbon nanotube field effect transistors. Front Inform Technol Electron Eng, 2017, 18(3): 423 doi: 10.1631/FITEE.1500366
[14]
Prabhu C M R, Singh A K. Low-power fast (LPF) SRAM cell for write/read operation. IEICE Electron Express, 2011, 8(18): 1473 doi: 10.1587/elex.8.1473
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3898 Times PDF downloads: 79 Times Cited by: 0 Times

    History

    Received: 15 November 2017 Revised: 06 February 2018 Online: Uncorrected proof: 20 April 2018Accepted Manuscript: 23 April 2018Published: 09 August 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Gang Li, Pengjun Wang, Yaopeng Kang, Yuejun Zhang. A low standby-power fast carbon nanotube ternary SRAM cell with improved stability[J]. Journal of Semiconductors, 2018, 39(8): 085002. doi: 10.1088/1674-4926/39/8/085002 G Li, P J Wang, Y P Kang, Y J Zhang, A low standby-power fast carbon nanotube ternary SRAM cell with improved stability[J]. J. Semicond., 2018, 39(8): 085002. doi: 10.1088/1674-4926/39/8/085002.Export: BibTex EndNote
      Citation:
      Gang Li, Pengjun Wang, Yaopeng Kang, Yuejun Zhang. A low standby-power fast carbon nanotube ternary SRAM cell with improved stability[J]. Journal of Semiconductors, 2018, 39(8): 085002. doi: 10.1088/1674-4926/39/8/085002

      G Li, P J Wang, Y P Kang, Y J Zhang, A low standby-power fast carbon nanotube ternary SRAM cell with improved stability[J]. J. Semicond., 2018, 39(8): 085002. doi: 10.1088/1674-4926/39/8/085002.
      Export: BibTex EndNote

      A low standby-power fast carbon nanotube ternary SRAM cell with improved stability

      doi: 10.1088/1674-4926/39/8/085002
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61474068, 61234002, 61404076), the S&T Plan of Zhejiang Provincial Science and Technology Department (No. 2016C31078), and the K.C. Wong Magna Fund in Ningbo University, China.

      More Information
      • Corresponding author: Email: wangpengjun@nbu.edu.cn
      • Received Date: 2017-11-15
      • Revised Date: 2018-02-06
      • Published Date: 2018-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return