SEMICONDUCTOR INTEGRATED CIRCUITS

A programmable MDAC with power scalability

Shubin Liu, Zhangming Zhu, Yintang Yang and Lianxi Liu

+ Author Affiliations

 Corresponding author: Zhu Zhangming, Email:zhangmingzhu@xidian.edu.cn

PDF

Abstract: A programmable high precision multiplying DAC (MDAC) is proposed. The MDAC incorporates a frequency-current converter (FCC) to adjust the power versus sampling rate and a programmable operational amplifier (POTA) to achieve the tradeoff between resolution and power of the MDAC, which makes the MDAC suitable for a 12 bit SHA-less pipelined ADC. The prototype of the proposed pipelined ADC is implemented in an SMIC CMOS 0.18 μm 1P6M process. Experimental results demonstrate that power of the proposed ADC varies from 15.4 mW (10 MHz) to 63 mW (100 MHz) while maintaining an SNDR of 60.5 to 63 dB at all sampling rates. The differential nonlinearity and integral nonlinearity without any calibration are no more than 2.2/-1 LSB and 1.6/-1.9 LSB, respectively.

Key words: pipelined ADCMDACfrequency-current converterpower scalabilityprogrammable OTA



[1]
Lee K H, Kim K S, Lee H. A 12 b 50 MS/s 21.6 mW 0.18μm CMOS ADC maximally sharing capacitors and op-amps. IEEE Trans Circuits Syst, 2011, 58(9):2127 doi: 10.1109/TCSI.2011.2112591
[2]
Hernes B, Briskemyr A, Andersen T N, et al. A 1.2 V 220 MS/s 10 b pipelined ADC implemented in 0.13μm digital CMOS. IEEE International Solid-State Circuits Conference, 2004:256 doi: 10.1007/978-90-481-9710-1_7
[3]
Lin J F, Chang S J, Liu C C, et al. A 10-bit 60-MS/s low-power pipelined ADC with split-capacitor CDS technique. IEEE Trans Circuits Syst Ⅱ:Express Briefs, 2010, 57:163 doi: 10.1109/TCSII.2010.2040307
[4]
Boulemnakher M, Andre E, Roux J, et al. A 1.2 V 4.5 mW 10 b 100 Ms/s pipelined ADC in a 65 nm COMS. IEEE International Solid-State Circuits Conference, 2008:250
[5]
Huang M C, Liu S I. A 10-MS/s-to-100kS/s power-scalable fully differential CBSC 10-bit pipelined ADC with adaptive biasing. IEEE Trans Circuits Syst, 2010, 57:11 doi: 10.1109/TCSII.2009.2037259
[6]
Ahmed I, John D A. A 50-MS/s (35 mW) to 1-kS/s (15 mW) power scaleable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation. IEEE J Solid-State Circuits, 2005, 40(12):2446 doi: 10.1109/JSSC.2005.856289
[7]
Zhang H, Tan J, Zhang C, et al. A 0.6-to-200 MSPS speed reconfigurable and 1.9-to-27 mW power scalable 10 bit ADC. European Solid-State Circuits Conference (ESSCIRC), 2011:367 https://core.ac.uk/display/4315162
[8]
Binkley D M, Hopper C E, Tucker S D, et al. A CAD methodology for optimizing transistor current and sizing in analog CMOS design. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(2):225 doi: 10.1109/TCAD.2002.806606
Fig. 1.  The proposed MDAC architecture.

Fig. 2.  A frequency–current converter.

Fig. 3.  Residue amplifier architecture and CMFB circuit.

Fig. 4.  A programmable current source.

Fig. 5.  Simulation results of the FCC (100 & 10 MHz).

Fig. 6.  MDAC simulation results. (a) $I_{\rm bias}$ and power of MDAC versus conversion frequency. (b) Dynamic performance of the MDAC versus conversion frequency.

Fig. 7.  Die microphotograph of the fabricated ADC.

Fig. 8.  ADC measurement set up.

Fig. 9.  Power and dynamic performance versus conversion frequency. (a) Bias current and power versus sampling frequency. (b) Dynamic parameters versus sampling frequency.

Fig. 10.  (a) Dynamic parameters versus input frequency. (b) Programmable performance.

Fig. 11.  (a) FFT result with SPI input 0000000. (b) FFT result with SPI input 0011011.

Fig. 12.  DNL and INL analysis.

Table 1.   The comparison of this design with its counterparts.

[1]
Lee K H, Kim K S, Lee H. A 12 b 50 MS/s 21.6 mW 0.18μm CMOS ADC maximally sharing capacitors and op-amps. IEEE Trans Circuits Syst, 2011, 58(9):2127 doi: 10.1109/TCSI.2011.2112591
[2]
Hernes B, Briskemyr A, Andersen T N, et al. A 1.2 V 220 MS/s 10 b pipelined ADC implemented in 0.13μm digital CMOS. IEEE International Solid-State Circuits Conference, 2004:256 doi: 10.1007/978-90-481-9710-1_7
[3]
Lin J F, Chang S J, Liu C C, et al. A 10-bit 60-MS/s low-power pipelined ADC with split-capacitor CDS technique. IEEE Trans Circuits Syst Ⅱ:Express Briefs, 2010, 57:163 doi: 10.1109/TCSII.2010.2040307
[4]
Boulemnakher M, Andre E, Roux J, et al. A 1.2 V 4.5 mW 10 b 100 Ms/s pipelined ADC in a 65 nm COMS. IEEE International Solid-State Circuits Conference, 2008:250
[5]
Huang M C, Liu S I. A 10-MS/s-to-100kS/s power-scalable fully differential CBSC 10-bit pipelined ADC with adaptive biasing. IEEE Trans Circuits Syst, 2010, 57:11 doi: 10.1109/TCSII.2009.2037259
[6]
Ahmed I, John D A. A 50-MS/s (35 mW) to 1-kS/s (15 mW) power scaleable 10-bit pipelined ADC using rapid power-on opamps and minimal bias current variation. IEEE J Solid-State Circuits, 2005, 40(12):2446 doi: 10.1109/JSSC.2005.856289
[7]
Zhang H, Tan J, Zhang C, et al. A 0.6-to-200 MSPS speed reconfigurable and 1.9-to-27 mW power scalable 10 bit ADC. European Solid-State Circuits Conference (ESSCIRC), 2011:367 https://core.ac.uk/display/4315162
[8]
Binkley D M, Hopper C E, Tucker S D, et al. A CAD methodology for optimizing transistor current and sizing in analog CMOS design. IEEE Trans Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(2):225 doi: 10.1109/TCAD.2002.806606
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2146 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 21 May 2013 Revised: 02 September 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shubin Liu, Zhangming Zhu, Yintang Yang, Lianxi Liu. A programmable MDAC with power scalability[J]. Journal of Semiconductors, 2014, 35(1): 015011. doi: 10.1088/1674-4926/35/1/015011 S B Liu, Z M Zhu, Y T Yang, L X Liu. A programmable MDAC with power scalability[J]. J. Semicond., 2014, 35(1): 015011. doi: 10.1088/1674-4926/35/1/015011.Export: BibTex EndNote
      Citation:
      Shubin Liu, Zhangming Zhu, Yintang Yang, Lianxi Liu. A programmable MDAC with power scalability[J]. Journal of Semiconductors, 2014, 35(1): 015011. doi: 10.1088/1674-4926/35/1/015011

      S B Liu, Z M Zhu, Y T Yang, L X Liu. A programmable MDAC with power scalability[J]. J. Semicond., 2014, 35(1): 015011. doi: 10.1088/1674-4926/35/1/015011.
      Export: BibTex EndNote

      A programmable MDAC with power scalability

      doi: 10.1088/1674-4926/35/1/015011
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61006028), the National High-Tech Program of China (Nos. 2012AA012302, 2013AA014103), and the PhD Program Foundation of Ministry of Education of China (No. 20120203110017)

      the National High-Tech Program of China 2013AA014103

      the National Natural Science Foundation of China 61234002

      the National Natural Science Foundation of China 61006028

      the PhD Program Foundation of Ministry of Education of China 20120203110017

      the National High-Tech Program of China 2012AA012302

      More Information
      • Corresponding author: Zhu Zhangming, Email:zhangmingzhu@xidian.edu.cn
      • Received Date: 2013-05-21
      • Revised Date: 2013-09-02
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return