SEMICONDUCTOR DEVICES

A 2.05 eV AlGaInP sub-cell used in next generation solar cells

Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun and Kaijian Chen

+ Author Affiliations

 Corresponding author: Zhang Wei, Email:ageli@vip.tom.com

PDF

Abstract: An Al0.13GaInP sub-cell used as the top cell in the next generation of high efficiency multi-junction solar cells is fabricated. An efficiency of 10.04% with 1457.3 mV in Voc and 11.9 mA/cm2 in Isc was obtained. QE comparison was carried out to verify the influence of an O-related defect introduced by the high Al-content materials on the cell performance during MOCVD growth. Hetero-structures are employed to confirm the origin of the decreasing short circuit current density compared to a GaInP single junction solar cell. An effective method to improve the performance of broadband solar cells by increasing Isc with a cost of Voc was proposed.

Key words: broadbandsolar cellheterojunction



[1]
DeSalvo G C, Bamett A M. Investigation of alternative window materials for GaAs solar cells. IEEE Trans Electron Devices, 1993, 40(4):705 doi: 10.1109/16.202781
[2]
Friedman D J, Kurtz S R, Kibbler A E, et al. Back surface fields for GaInP2 solar cells. Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, 1991:358
[3]
Kurtz S R, Olson J M, Friedman D J, et al. Effect of front-surface doping onback-surface passivation in GaInP cells. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997:819
[4]
Fahrenbruch A L, Bube R H. Fundamentals of solar cells. Academic Press, 1983:67
[5]
Jaakkola R, Lammasniemi J, Kazantsev A B, et al. Comparison of Al0.51In0.49P and Ga0.51In0.49P window layers for GaAs and GaInAsP solar cells. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997:891
[6]
Liang Y, Wu Y, Feng D. Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc, 2009, 131(1):56 doi: 10.1021/ja808373p
[7]
King R R, Law D C, Edmondson K M. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett, 2007, 90:183516 doi: 10.1063/1.2734507
[8]
Geisz J F, Kurtz S, Wanlass M W. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Appl Phys Lett, 2007, 91:023502 doi: 10.1063/1.2753729
[9]
Martía A, Lópeza N, Antolína E, et al. Novel semiconductor solar cell structures:the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511/512:638 doi: 10.1016/j.tsf.2005.12.122
[10]
Karam N H, King R R, Cavicchi D T. Development and characterization of high-efficiency Ga0.5In0.5P/GaAs/Ge dual-and triple-junction solar cells. IEEE Trans Electron Devices, 1999, 46:2116
[11]
King R R, Ermer J H, Joslin D E. Double heterostructures for characterization of bulk lifetime and interface recombination velocity in Ⅲ-V multijunction solar cells. The 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, 1998:86
[12]
Boulou M, Bois D. Cathodoluminescence measurements of the minority-carrier lifetime in semiconductors. J Appl Phys, 1977, 48:4713 doi: 10.1063/1.323537
Fig. 1.  (a). Designed structure of the Al0.13GaInP sub-cell. (b) Calculated equilibrium band diagram of the Al0.13GaInP sub-cell

Fig. 2.  (a) I-V characteristics of Al0.13GaInP sub-cells. (b) QE of the sub-cells and calculated QE (dash line)

Fig. 3.  QE curves of the homo-and hetero-junction sub-cells

Fig. 4.  I-V curves of the homo-and hetero-junction sub-cells

Table 1.   I-V characteristics of the homo-and hetero-junction cells

[1]
DeSalvo G C, Bamett A M. Investigation of alternative window materials for GaAs solar cells. IEEE Trans Electron Devices, 1993, 40(4):705 doi: 10.1109/16.202781
[2]
Friedman D J, Kurtz S R, Kibbler A E, et al. Back surface fields for GaInP2 solar cells. Proceedings of the 22nd IEEE Photovoltaic Specialists Conference, 1991:358
[3]
Kurtz S R, Olson J M, Friedman D J, et al. Effect of front-surface doping onback-surface passivation in GaInP cells. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997:819
[4]
Fahrenbruch A L, Bube R H. Fundamentals of solar cells. Academic Press, 1983:67
[5]
Jaakkola R, Lammasniemi J, Kazantsev A B, et al. Comparison of Al0.51In0.49P and Ga0.51In0.49P window layers for GaAs and GaInAsP solar cells. Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997:891
[6]
Liang Y, Wu Y, Feng D. Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc, 2009, 131(1):56 doi: 10.1021/ja808373p
[7]
King R R, Law D C, Edmondson K M. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett, 2007, 90:183516 doi: 10.1063/1.2734507
[8]
Geisz J F, Kurtz S, Wanlass M W. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Appl Phys Lett, 2007, 91:023502 doi: 10.1063/1.2753729
[9]
Martía A, Lópeza N, Antolína E, et al. Novel semiconductor solar cell structures:the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511/512:638 doi: 10.1016/j.tsf.2005.12.122
[10]
Karam N H, King R R, Cavicchi D T. Development and characterization of high-efficiency Ga0.5In0.5P/GaAs/Ge dual-and triple-junction solar cells. IEEE Trans Electron Devices, 1999, 46:2116
[11]
King R R, Ermer J H, Joslin D E. Double heterostructures for characterization of bulk lifetime and interface recombination velocity in Ⅲ-V multijunction solar cells. The 2nd World Conference on Photovoltaic Solar Energy Conversion, Vienna, 1998:86
[12]
Boulou M, Bois D. Cathodoluminescence measurements of the minority-carrier lifetime in semiconductors. J Appl Phys, 1977, 48:4713 doi: 10.1063/1.323537
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2680 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 08 January 2014 Revised: 24 February 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells[J]. Journal of Semiconductors, 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010 H B Lu, X Y Li, W Zhang, D Y Zhou, M Q Shi, L J Sun, K J Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells[J]. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010.Export: BibTex EndNote
      Citation:
      Hongbo Lu, Xinyi Li, Wei Zhang, Dayong Zhou, Mengqi Shi, Lijie Sun, Kaijian Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells[J]. Journal of Semiconductors, 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010

      H B Lu, X Y Li, W Zhang, D Y Zhou, M Q Shi, L J Sun, K J Chen. A 2.05 eV AlGaInP sub-cell used in next generation solar cells[J]. J. Semicond., 2014, 35(9): 094010. doi: 10.1088/1674-4926/35/9/094010.
      Export: BibTex EndNote

      A 2.05 eV AlGaInP sub-cell used in next generation solar cells

      doi: 10.1088/1674-4926/35/9/094010
      More Information
      • Corresponding author: Zhang Wei, Email:ageli@vip.tom.com
      • Received Date: 2014-01-08
      • Revised Date: 2014-02-24
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return