SEMICONDUCTOR DEVICES

Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition"

Leifeng Chen1, 2, and Hong He1

+ Author Affiliations

 Corresponding author: Leifeng Chen, chlf@hdu.edu.cn

PDF

Abstract: Here, we reply to comments by Valentic et al. on our paper published in Electrochimica Acta (2014, 130: 279). They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell. We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices, not Au nanoparticles (film)/n-Si Schottky barrier devices. During the doping process, most of the Au nanopatricles covered the surfaces of the graphene. Schottky barriers between doped graphene and n-Si dominate the total cells properties. Through doping, by adjusting and tailoring the Fermi level of the graphene, the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell. They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the self-compensation by deep in-diffusion of Au nanoparticles. But for our fabricated devices, we know that an oxide layer covered the Si surface, which makes it difficult for the Au ions to diffuse into the Si layer, due to the continuous growth of SiO2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end.

Key words: solar cellgraphenesiliconchemical dopingAu nanoparticles



[1]
Li X M, Zhu H W, Wang K L, et al. Graphene on-silicon Schottky junction solar cells. Adv Mater, 2010, 22: 2743 doi: 10.1002/adma.200904383
[2]
Li X M, Lv Z, Zhu H W. Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater, 2015, 27: 6549 doi: 10.1002/adma.201502999
[3]
Li X, Zang X B, Li X M, et al. Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv Energy Mater, 2014, 4: 1400224 doi: 10.1002/aenm.201400224
[4]
Li X M, Xie D, Park H, et al. Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells. Adv Energy Mater, 2013, 3: 1029 doi: 10.1002/aenm.v3.8
[5]
Li X M, Xie D, Park H, et al. Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale, 2013, 5: 1945 doi: 10.1039/c2nr33795a
[6]
Kang Z, Tan X Y, Li X, et al. Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells. Phys Chem Chem Phys, 2016, 18: 1992 doi: 10.1039/C5CP06893B
[7]
Li Z R, Kunets V P, Saini V, et al. Light-harvesting using high density p-type single wall carbon nanotube/n type silicon heterojunctions. ACS Nano, 2009, 3: 1407 doi: 10.1021/nn900197h
[8]
Miao X H, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping. Nano Lett, 2012, 12: 2745 doi: 10.1021/nl204414u
[9]
Li Y F, Kodama S, Kaneko T, et al. Performance enhancement of solar cells based on single-walled carbon nanotubes by Au nanoparticles. Appl Phys Lett, 2012, 101: 083901 doi: 10.1063/1.4739427
[10]
Ma M, Xue Q Z, Chen H J, et al. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2/Si. Appl Phys Lett, 2010, 97: 061902 doi: 10.1063/1.3478230
[11]
Choe M, Cho C Y, Shim J P, et al. Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices. Appl Phys Lett, 2012, 101: 031115 doi: 10.1063/1.4737637
[12]
Liu X, Zhang X W, Meng J H, et al. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl Phys Lett, 2015, 106: 233901 doi: 10.1063/1.4922373
[13]
Lin Y X, Li X M, Xie D, et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ Sci, 2013, 6: 108 doi: 10.1039/C2EE23538B
[14]
Arefinia Z, Asgari A. An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells. Mater Sci Semicond Process, 2015, 35: 181 doi: 10.1016/j.mssp.2015.02.030
[15]
Liu X, Zhang X W, Yin Z G, et al. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl Phys Lett, 2014, 105: 183901 doi: 10.1063/1.4901106
[16]
Song Y, Li X M, Mackin C, et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett, 2015, 15: 2104 doi: 10.1021/nl505011f
[17]
Chen L F, He H, Yu H, et al. Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition. Electrochim Acta, 2014, 130: 279 doi: 10.1016/j.electacta.2014.03.020
[18]
Valentic L, Gorji N E. Comment on "Chen et al., Fabrication and photovoltaic conversion enhancement...". Electrochimica Acta, 2014. J Semicond, 2015, 36: 094012 doi: 10.1088/1674-4926/36/9/094012
[19]
Gorji N E. Degradation of ultrathin CdTe films with SWCNT or graphene back contact. Physica E, 2015, 70: 84 doi: 10.1016/j.physe.2015.01.015
[20]
Dharmadasa I M, Samantilleke A P, Chaureg N B. New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model. Semicond Sci Technol, 2002, 17(12):1238 doi: 10.1088/0268-1242/17/12/306
[21]
Kim K K, Reina A S, Shi Y M, et al. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21: 285205 doi: 10.1088/0957-4484/21/28/285205
[22]
Cho C Y, Choe M, Lee S J, et al. Near ultraviolet light-emitting diodes with transparent conducting layer of gold doped multi-layer graphene. J Appl Phys, 2013, 113: 113102 doi: 10.1063/1.4795502
[23]
Chen L F, He H, Lei D, et al. Field emission performance enhancement of Au nanoparticles doped graphene emitters. Appl Phys Lett, 2013, 103: 233105 doi: 10.1063/1.4837895
[24]
Gunes F, Shin H J, Biswas C, et al. Layer-by-layer doping of few-layer graphene film. ACS Nano, 2010, 4: 4595 doi: 10.1021/nn1008808
[25]
Kwon K C Choi K S, Kim S Y. Increased work function in few-layer graphene sheets via metal chloride doping. Adv Funct Mater, 2012, 22: 4724 doi: 10.1002/adfm.v22.22
[26]
Liu Z K, Li J H, Sun Z H, et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano, 2012, 6: 810 doi: 10.1021/nn204675r
[27]
Chen L F, Yu H, Zhong J S, et al. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell. Electrochim Acta, 2015, 178: 732 doi: 10.1016/j.electacta.2015.08.082
[28]
Chen L F, He H, Zhang S J, et al. Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells. Nanoscale Res Lett, 2013, 8: 225 doi: 10.1186/1556-276X-8-225
[29]
Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express, 2009, 17: 10195 doi: 10.1364/OE.17.010195
[30]
Pillai S, Green M A. Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells, 2010, 94: 1481 doi: 10.1016/j.solmat.2010.02.046
Fig. 1.  Schematic of the band diagram with (a) small and (b) large graphene work function ($\phi_{\rm G}$).

Fig. 2.  (a) SEM images of Au NPs prepared by annealing the Au films with the nominal thicknesses of 9 nm on few layer graphene. (b) Illuminated J-V characteristics of the Au Nanoparticles/few layers/Si solar cells with various initial Au thicknesses. Reproduced with permission from Ref. [13]. Copyright 2015, AIP Publishing LLC.

Fig. 3.  I-V characteristics of graphene/n-silicon devices with varying oxide thicknesses after doping. Reproduced with permission from Ref. [14]. Copyright 2015, ACS Publications.

Fig. 4.  The energy band diagram of the graphene/n-Si Schottky barrier cells. Reproduced with permission from Ref. [15]. Copyright 2014, Elsevier Ltd.

Fig. 5.  Schematic diagrams for (a) modest Au nanoparticles doped on graphene/Si Schottky barrier solar cell and (b) too many and too large Au nanoparticles doped on.

Fig. 6.  The energy band diagram of the graphene/SiOx/n-Si solar cells.

Fig. 7.  The change of efficiency for graphene/Au nanoparticles/n-S the solar cell with time and Au covering the Si shown in the inset.

[1]
Li X M, Zhu H W, Wang K L, et al. Graphene on-silicon Schottky junction solar cells. Adv Mater, 2010, 22: 2743 doi: 10.1002/adma.200904383
[2]
Li X M, Lv Z, Zhu H W. Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater, 2015, 27: 6549 doi: 10.1002/adma.201502999
[3]
Li X, Zang X B, Li X M, et al. Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv Energy Mater, 2014, 4: 1400224 doi: 10.1002/aenm.201400224
[4]
Li X M, Xie D, Park H, et al. Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells. Adv Energy Mater, 2013, 3: 1029 doi: 10.1002/aenm.v3.8
[5]
Li X M, Xie D, Park H, et al. Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale, 2013, 5: 1945 doi: 10.1039/c2nr33795a
[6]
Kang Z, Tan X Y, Li X, et al. Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells. Phys Chem Chem Phys, 2016, 18: 1992 doi: 10.1039/C5CP06893B
[7]
Li Z R, Kunets V P, Saini V, et al. Light-harvesting using high density p-type single wall carbon nanotube/n type silicon heterojunctions. ACS Nano, 2009, 3: 1407 doi: 10.1021/nn900197h
[8]
Miao X H, Tongay S, Petterson M K, et al. High efficiency graphene solar cells by chemical doping. Nano Lett, 2012, 12: 2745 doi: 10.1021/nl204414u
[9]
Li Y F, Kodama S, Kaneko T, et al. Performance enhancement of solar cells based on single-walled carbon nanotubes by Au nanoparticles. Appl Phys Lett, 2012, 101: 083901 doi: 10.1063/1.4739427
[10]
Ma M, Xue Q Z, Chen H J, et al. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2/Si. Appl Phys Lett, 2010, 97: 061902 doi: 10.1063/1.3478230
[11]
Choe M, Cho C Y, Shim J P, et al. Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices. Appl Phys Lett, 2012, 101: 031115 doi: 10.1063/1.4737637
[12]
Liu X, Zhang X W, Meng J H, et al. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl Phys Lett, 2015, 106: 233901 doi: 10.1063/1.4922373
[13]
Lin Y X, Li X M, Xie D, et al. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ Sci, 2013, 6: 108 doi: 10.1039/C2EE23538B
[14]
Arefinia Z, Asgari A. An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells. Mater Sci Semicond Process, 2015, 35: 181 doi: 10.1016/j.mssp.2015.02.030
[15]
Liu X, Zhang X W, Yin Z G, et al. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl Phys Lett, 2014, 105: 183901 doi: 10.1063/1.4901106
[16]
Song Y, Li X M, Mackin C, et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett, 2015, 15: 2104 doi: 10.1021/nl505011f
[17]
Chen L F, He H, Yu H, et al. Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition. Electrochim Acta, 2014, 130: 279 doi: 10.1016/j.electacta.2014.03.020
[18]
Valentic L, Gorji N E. Comment on "Chen et al., Fabrication and photovoltaic conversion enhancement...". Electrochimica Acta, 2014. J Semicond, 2015, 36: 094012 doi: 10.1088/1674-4926/36/9/094012
[19]
Gorji N E. Degradation of ultrathin CdTe films with SWCNT or graphene back contact. Physica E, 2015, 70: 84 doi: 10.1016/j.physe.2015.01.015
[20]
Dharmadasa I M, Samantilleke A P, Chaureg N B. New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model. Semicond Sci Technol, 2002, 17(12):1238 doi: 10.1088/0268-1242/17/12/306
[21]
Kim K K, Reina A S, Shi Y M, et al. Enhancing the conductivity of transparent graphene films via doping. Nanotechnology, 2010, 21: 285205 doi: 10.1088/0957-4484/21/28/285205
[22]
Cho C Y, Choe M, Lee S J, et al. Near ultraviolet light-emitting diodes with transparent conducting layer of gold doped multi-layer graphene. J Appl Phys, 2013, 113: 113102 doi: 10.1063/1.4795502
[23]
Chen L F, He H, Lei D, et al. Field emission performance enhancement of Au nanoparticles doped graphene emitters. Appl Phys Lett, 2013, 103: 233105 doi: 10.1063/1.4837895
[24]
Gunes F, Shin H J, Biswas C, et al. Layer-by-layer doping of few-layer graphene film. ACS Nano, 2010, 4: 4595 doi: 10.1021/nn1008808
[25]
Kwon K C Choi K S, Kim S Y. Increased work function in few-layer graphene sheets via metal chloride doping. Adv Funct Mater, 2012, 22: 4724 doi: 10.1002/adfm.v22.22
[26]
Liu Z K, Li J H, Sun Z H, et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano, 2012, 6: 810 doi: 10.1021/nn204675r
[27]
Chen L F, Yu H, Zhong J S, et al. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell. Electrochim Acta, 2015, 178: 732 doi: 10.1016/j.electacta.2015.08.082
[28]
Chen L F, He H, Zhang S J, et al. Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells. Nanoscale Res Lett, 2013, 8: 225 doi: 10.1186/1556-276X-8-225
[29]
Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express, 2009, 17: 10195 doi: 10.1364/OE.17.010195
[30]
Pillai S, Green M A. Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells, 2010, 94: 1481 doi: 10.1016/j.solmat.2010.02.046
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3569 Times PDF downloads: 22 Times Cited by: 0 Times

    History

    Received: 20 July 2016 Revised: 13 October 2016 Online: Published: 01 April 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Leifeng Chen, Hong He. Answer to comments on 'Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition'[J]. Journal of Semiconductors, 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007 L F Chen, H He. Answer to comments on \'Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition\'[J]. J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007.Export: BibTex EndNote
      Citation:
      Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition"[J]. Journal of Semiconductors, 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

      L F Chen, H He. Answer to comments on \'Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition\'[J]. J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007.
      Export: BibTex EndNote

      Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition"

      doi: 10.1088/1674-4926/38/4/044007
      More Information
      • Corresponding author: Leifeng Chen, chlf@hdu.edu.cn
      • Received Date: 2016-07-20
      • Revised Date: 2016-10-13
      • Published Date: 2017-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return