SEMICONDUCTOR PHYSICS

High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering

Zuyin Zhang and Guofeng Song

+ Author Affiliations

 Corresponding author: Zuyin Zhang,Email:zhangzuyin@semi.ac.cn

PDF

Abstract: Coherent anti-Stokes Raman scattering spectroscopy(CARS) is a well-known detecting tool in biosensing and nonlinear spectroscopy. It can provide a non-invasive alternative without the need for exogenous labels, while the enhancement factor for surface plasmon resonances(SPR) are extensively used to increase the local field close to the oscillators and which can obtain high enhancement. In this work, we investigate the enhancement factor of our structure for surface-enhanced coherent anti-Stokes Raman scattering. The absorption spectrum of the structure has been studied, a wide range of absorption has been realized. The enhancement can be as high as 1016 over standard CARS. Our design is very useful for improving the enhancement factor of surface-enhanced coherent anti-Stokes Raman scattering.

Key words: coherent anti-stokes Raman scattering (CARS)enhancement factorlocalized surface plasmon



[1]
Liu W L, Li T H. Compositional dependence of Raman frequencies in SixGe1-x alloys. J Semicond, 2012, 33(11):112001 doi: 10.1088/1674-4926/33/11/112001
[2]
Zhong Q H. Studies of electron Raman scattering in a HgS/CdS spherical quantum dot quantum well. J Semicond, 2013, 34(12):122002 doi: 10.1088/1674-4926/34/12/122002
[3]
Kneipp K. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78, 1667 doi: 10.1103/PhysRevLett.78.1667
[4]
Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett, 1999, 82:4142 doi: 10.1103/PhysRevLett.82.4142
[5]
Haes A J. A nanoscale optical biosensor:the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B, 2004, 108:109 doi: 10.1021/jp0361327
[6]
Mayer K M, Hafner J H. Localized surface plasmon resonance sensors. Chem Rev, 2011, 111:3828 doi: 10.1021/cr100313v
[7]
Tolles W M. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS). Appl Spectros, 1977, 31:253 doi: 10.1366/000370277774463625
[8]
Guo B S, Song G F, Chen L H, et al. Numerical study of surface plasmons nano-optical antenna and its array. J Semicond, 2008, 29(12):2340
[9]
Xiao G L, Yang H Y. The effect of array periodicity on the filtering characteristics of metal/dielectric photonic crystals. J Semicond, 2011, 32(4):044004 doi: 10.1088/1674-4926/32/4/044004
[10]
Li L Q, Lv Y W. Surface-plasmon-enhanced light transmission intensity with a basic grating in GaN-based LED. J Semicond, 2014, 35(4):043003 doi: 10.1088/1674-4926/35/4/043003
[11]
Koo T, Chan S. Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Opt Lett, 2005, 30:1024 doi: 10.1364/OL.30.001024
[12]
Namboodiri V. Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine. VibSpectroscopy, 2010:8 http://cn.bing.com/academic/profile?id=30a6b6a65952a0bc65ccb1ebb25c06a4&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Addison C J. Tuning gold nanoparticle self-assembly for optimum coherent anti-Stokes Raman scattering and second harmonic generation response. J Phys Chem C, 2009, 113:3586 doi: 10.1021/jp809579b
[14]
Chew H. Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres. J Opt Soc Am B, 1984, 6:4370 http://cn.bing.com/academic/profile?id=41e24340a3af57400280be884a49daf1&encoded=0&v=paper_preview&mkt=zh-cn
[15]
Steuwe C. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces. Nano Lett, 2011, 11:5339 doi: 10.1021/nl202875w
[16]
Tip A. Linear dispersive dielectrics as limits of Drude-Lorentz systems. Phys Rev E, 2004, 69:016610 doi: 10.1103/PhysRevE.69.016610
[17]
Zhang J, Cai L K, Bai W L, et al. Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide. Opt Lett, 2010, 35:20 http://cn.bing.com/academic/profile?id=923d7481fa2cf0718c88b666c365bff0&encoded=0&v=paper_preview&mkt=zh-cn
[18]
Halas N J. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111:3913 doi: 10.1021/cr200061k
Fig. 1.  (Color online) (a) The schematic geometry of the structure. (b) The z-cut section of the structure. The length of the triangle is L.

Fig. 2.  (Color online) Schematic band energy diagram of SECARS.

Fig. 3.  The absorption spectrum of the structure when P=350 nm.

Fig. 4.  The Ez of the three absorption peaks at the wavelength of (a) 990, (b) 1050, and (c) 1160 nm.

Fig. 5.  Calculated absorption spectra in dependence on the period.

Fig. 6.  The local electric field enhancement of the wavelength (a) 960, (b) 1064, and (c) 1190 nm (z cut on the surface of the triangular prism).

Fig. 7.  The influence of (a) the length of the side, (b) the period of the array and (c) the thickness of the Au film on the enhancement factor.

[1]
Liu W L, Li T H. Compositional dependence of Raman frequencies in SixGe1-x alloys. J Semicond, 2012, 33(11):112001 doi: 10.1088/1674-4926/33/11/112001
[2]
Zhong Q H. Studies of electron Raman scattering in a HgS/CdS spherical quantum dot quantum well. J Semicond, 2013, 34(12):122002 doi: 10.1088/1674-4926/34/12/122002
[3]
Kneipp K. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett, 1997, 78, 1667 doi: 10.1103/PhysRevLett.78.1667
[4]
Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett, 1999, 82:4142 doi: 10.1103/PhysRevLett.82.4142
[5]
Haes A J. A nanoscale optical biosensor:the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B, 2004, 108:109 doi: 10.1021/jp0361327
[6]
Mayer K M, Hafner J H. Localized surface plasmon resonance sensors. Chem Rev, 2011, 111:3828 doi: 10.1021/cr100313v
[7]
Tolles W M. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS). Appl Spectros, 1977, 31:253 doi: 10.1366/000370277774463625
[8]
Guo B S, Song G F, Chen L H, et al. Numerical study of surface plasmons nano-optical antenna and its array. J Semicond, 2008, 29(12):2340
[9]
Xiao G L, Yang H Y. The effect of array periodicity on the filtering characteristics of metal/dielectric photonic crystals. J Semicond, 2011, 32(4):044004 doi: 10.1088/1674-4926/32/4/044004
[10]
Li L Q, Lv Y W. Surface-plasmon-enhanced light transmission intensity with a basic grating in GaN-based LED. J Semicond, 2014, 35(4):043003 doi: 10.1088/1674-4926/35/4/043003
[11]
Koo T, Chan S. Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Opt Lett, 2005, 30:1024 doi: 10.1364/OL.30.001024
[12]
Namboodiri V. Surface-enhanced femtosecond CARS spectroscopy (SE-CARS) on pyridine. VibSpectroscopy, 2010:8 http://cn.bing.com/academic/profile?id=30a6b6a65952a0bc65ccb1ebb25c06a4&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Addison C J. Tuning gold nanoparticle self-assembly for optimum coherent anti-Stokes Raman scattering and second harmonic generation response. J Phys Chem C, 2009, 113:3586 doi: 10.1021/jp809579b
[14]
Chew H. Surface enhancement of coherent anti-Stokes Raman scattering by colloidal spheres. J Opt Soc Am B, 1984, 6:4370 http://cn.bing.com/academic/profile?id=41e24340a3af57400280be884a49daf1&encoded=0&v=paper_preview&mkt=zh-cn
[15]
Steuwe C. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces. Nano Lett, 2011, 11:5339 doi: 10.1021/nl202875w
[16]
Tip A. Linear dispersive dielectrics as limits of Drude-Lorentz systems. Phys Rev E, 2004, 69:016610 doi: 10.1103/PhysRevE.69.016610
[17]
Zhang J, Cai L K, Bai W L, et al. Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide. Opt Lett, 2010, 35:20 http://cn.bing.com/academic/profile?id=923d7481fa2cf0718c88b666c365bff0&encoded=0&v=paper_preview&mkt=zh-cn
[18]
Halas N J. Plasmons in strongly coupled metallic nanostructures. Chem Rev, 2011, 111:3913 doi: 10.1021/cr200061k
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2838 Times PDF downloads: 42 Times Cited by: 0 Times

    History

    Received: 06 January 2016 Revised: 28 August 2016 Online: Published: 01 February 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zuyin Zhang, Guofeng Song. High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering[J]. Journal of Semiconductors, 2017, 38(2): 022001. doi: 10.1088/1674-4926/38/2/022001 Z Y Zhang, G F Song. High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering[J]. J. Semicond., 2017, 38(2): 022001. doi: 10.1088/1674-4926/38/2/022001.Export: BibTex EndNote
      Citation:
      Zuyin Zhang, Guofeng Song. High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering[J]. Journal of Semiconductors, 2017, 38(2): 022001. doi: 10.1088/1674-4926/38/2/022001

      Z Y Zhang, G F Song. High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering[J]. J. Semicond., 2017, 38(2): 022001. doi: 10.1088/1674-4926/38/2/022001.
      Export: BibTex EndNote

      High enhancement factor of Au nano triangular prism structure for surface enhanced coherent anti-Stokes Raman scattering

      doi: 10.1088/1674-4926/38/2/022001
      Funds:

      Project supported by the National Key Research Program of China 2011ZX01015-001

      the National Basic Research Program of China 2011CBA00608

      the National Basic Research Program of China 2015CB932402

      the National Basic Research Program of China 2015CB351902

      the National Basic Research Program of China 2012CB619203

      Project supported by the National Key Research Program of China(No.2011ZX01015-001) and the National Basic Research Program of China(Nos.2011CBA00608, 2012CB619203, 2015CB351902, 2015CB932402)

      More Information
      • Corresponding author: Zuyin Zhang,Email:zhangzuyin@semi.ac.cn
      • Received Date: 2016-01-06
      • Revised Date: 2016-08-28
      • Published Date: 2017-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return