SEMICONDUCTOR DEVICES

Research progress of Ⅲ-Ⅴ laser bonding to Si

Bo Ren, Yan Hou and Yanan Liang

+ Author Affiliations

 Corresponding author: Ren Bo, Email:renbo@semi.ac.cn

PDF

Abstract: The vigorous development of silicon photonics makes a silicon-based light source essential for optoelectronics' integration. Bonding of Ⅲ-Ⅴ/Si hybrid laser has developed rapidly in the last ten years. In the tireless efforts of researchers, we are privileged to see these bonding methods, such as direct bonding, medium adhesive bonding and low temperature eutectic bonding. They have been developed and applied to the research and fabrication of Ⅲ-Ⅴ/Si hybrid lasers. Some research groups have made remarkable progress. Tanabe Katsuaki of Tokyo University successfully implemented a silicon-based InAs/GaAs quantum dot laser with direct bonding method in 2012. They have bonded the InAs/GaAs quantum dot laser to the silicon substrate and the silicon ridge waveguide, respectively. The threshold current of the device is as low as 200 A/cm2. Stevan Stanković and Sui Shaoshuai successfully produced a variety of hybrid Ⅲ-Ⅴ/Si laser with the method of BCB bonding, respectively. BCB has high light transmittance and it can provide high bonding strength. Researchers of Tokyo University and Peking University have realized Ⅲ-Ⅴ/Si hybrid lasers with metal bonding method. We describe the progress in the fabrication of Ⅲ-Ⅴ/Si hybrid lasers with bonding methods by various research groups in recent years. The advantages and disadvantages of these methods are presented. We also introduce the progress of the growth of III-V epitaxial layer on silicon substrate, which is also a promising method to realize silicon-based light source. I hope that readers can have a general understanding of this field from this article and we can attract more researchers to focus on the study in this field.

Key words: silicon-based bondinghybrid laseroptoelectronic integration



[1]
Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203 doi: 10.1364/OE.14.009203
[2]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photon, 2010, 4(8): 511 doi: 10.1038/nphoton.2010.167
[3]
Liang Di, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3(3):1782 doi: 10.3390/ma3031782
[4]
Chen Hongda. Microelectronic and optoelectronic integrated technology. Beijing: Publishing House of Electronics Industry, 2008
[5]
Zhao Hongquan. Research of Si and InP bonding and the development of Si based InGaAsP laser. Doctoral Dissertation, Institute of Semiconductors, Chinese Academy of Sciences, 2006
[6]
Wang Xiaoqing, Yu Yude, Ning Jin. Researching the silicon direct wafer bonding with interfacial SiO2 layer. Journal of Semiconductors, 2016, 37(5): 056001 doi: 10.1088/1674-4926/37/5/056001
[7]
Lao Chunfang, Cao Yanfeng, Wu Huizhen, et al. Fabrication of InAsP/InGaAsP quantum-well 1.3 μm VCSELs by direct wafer-bonding. Journal of Semiconductors, 2008, 11: 2286 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=08042602&journal_id=bdtxbcn
[8]
Taylor G W, Evaldsson P A. Temperature dependent operation of the vertical cavity surface emitting laser. IEEE J Quantum Electron, 1994, 30(10): 2262 doi: 10.1109/3.328601
[9]
Esser R H, Hobart K D, Kub F J. Directional diffusion and void formation at a Si (001) bonded wafer interface. J Appl Phys, 2002, 92(4): 1945 doi: 10.1063/1.1491590
[10]
Tong Q Y, Goesele U. Semiconductor wafer bonding: science and technology. John Wiley, 1999
[11]
Wada H, Kamijoh T. 1.3 μm InP-InGaAsP lasers fabricated on Si substrates by wafer bonding. IEEE J Sel Topics Quantum Electron, 1997, 3(3): 937 doi: 10.1109/2944.640647
[12]
Tanabe K, Watanabe K, Arakawa Y. 1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces. Optics Express, 2012, 20(26): B315 doi: 10.1364/OE.20.00B315
[13]
Tanabe K, Watanabe K, Arakawa Y. Ⅲ-Ⅴ/Si hybrid photonic devices by direct fusion bonding. Scientific Reports, 2012, 2: 349
[14]
Eaton W P, Risbud S H, Smith R L. Silicon wafer-to-wafer bonding at T < 200℃ with polymethylmethacrylate. Appl Phys Lett, 1994, 65(4): 439 doi: 10.1063/1.112326
[15]
Quenzer H J, Benecke W. Low-temperature silicon wafer bonding. Sensors and Actuators A, 1992, 32(1): 340 https://www.researchgate.net/publication/245079598_Low-temperature_silicon_wafer_bonding
[16]
Zhao Huan. The growth of 1.3-1.55 μm GaInNAs(Sb)/GaAs quantum well and fabrication of laser. Doctoral Dissertation. Institute of Semiconductors, Chinese Academy of Sciences, 2006
[17]
Roelkens G, Van Campenhout J, Brouckaert J, et al. Ⅲ-Ⅴ/Si photonics by die-to-wafer bonding. Materials Today, 2007, 10(7): 36
[18]
Stanković S, Jones R, Sysak M N, et al. 1310-nm hybrid Ⅲ-Ⅴ/Si Fabry-Pérot laser based on adhesive bonding. IEEE Photon Technol Lett, 2011, 23(23): 1781 doi: 10.1109/LPT.2011.2169397
[19]
Yang Yuede, Sui Shaoshuai, Tang Mingying, et al. Dielectric assisted bonding of Ⅲ-Ⅴ/Si hybrid metal lasers. Laser & Optoelectronics Progress, 2014, 51(11): 88
[20]
Yang Yuede, Sui Shaoshuai, Tang Mingying, et al. Metal limited medium assisted bonding Ⅲ-Ⅴ/Silicon base hybrid integrated laser for optical interconnection. Laser Optoelectron Progress, 2014, 51(11): 111401
[21]
Sui S S, Tang M Y, Yang Y D, et al. Investigation of hybrid microring lasers adhesively bonded on silicon wafer. Photon Res, 2015, 3(6): 289 doi: 10.1364/PRJ.3.000289
[22]
Sui S S, Tang M Y, Huang Y Z, et al. Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array. Electron Lett, 2015, 51(6): 506 doi: 10.1049/el.2014.4442
[23]
Sui S S, Tang M Y, Du Y, et al. A twelve-wavelength hybrid microdisk laser array coupled to a SOI bus waveguide. Asia Communications and Photonics Conference, 2014: AW4B.2
[24]
Sui S S, Tang M Y, Yang Y D, et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array. IEEE J Quantum Electron, 2015, 51(4): 1 https://www.researchgate.net/publication/273395374_Sixteen-Wavelength_Hybrid_AlGaInAsSi_Microdisk_Laser_Array
[25]
Tanabe K, Guimard D, Bordel D, et al. Fabrication of electrically pumped InAs/GaAs quantum dot lasers on Si substrates by Aumediated wafer bonding. Physica Status Solidi C, 2011, 8(2): 319 doi: 10.1002/pssc.v8.2
[26]
Tanabe K, Guimard D, Bordel D, et al. Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Optics Express, 2010, 18(10): 10604 doi: 10.1364/OE.18.010604
[27]
Ting C, Tao H, Pan J Q, et al. Electrically pumped room-temperature pulsed InGaAsP-Si hybrid lasers based on metal bonding. Chinese Physics Letters, 2009, 26(6): 064211 doi: 10.1088/0256-307X/26/6/064211
[28]
Hong T, Ran G Z, Chen T, et al. A selective-area metal bonding InGaAsP-Si laser. IEEE Photon Technol Lett, 2010, 22(15): 1141 doi: 10.1109/LPT.2010.2050683
[29]
Hong T, Li Y P, Chen W X, et al. Bonding InGaAsP/ITO/Si hybrid laser with ITO as cathode and light-coupling material. IEEE Photon Technol Lett, 2012, 24(8): 712 doi: 10.1109/LPT.2012.2187328
[30]
Yuan Lei, Tao Li, Yu Haoyong, et al. Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method. IEEE Photonics Technology Letters, 2013, 25(12): 1180 doi: 10.1109/LPT.2013.2262265
[31]
Yuan Lijun, Tao Li, Chen Weixi, et al. A buried ridge stripe structure InGaAsP-Si hybrid laser. IEEE Photonics Technology Letters, 2015, 27(4): 352 doi: 10.1109/LPT.2014.2372892
[32]
Huang Xinnan, Gao Yonghao, Xu Xingsheng. Bonding III-V material to SOI with transparent and conductive ZnO film at low temperature. Optics Express, 2014, 22(12): 14285 doi: 10.1364/OE.22.014285
Fig. 1.  Flow chart of silicon-based InGaAsP laser. (a) The structure of InP-based double heterojunction laser glued to the glass substrate. (b) Etching InP substrate and bonding laser structure to Si wafers at room temperature. (c) Heat treatment at 400 ℃ after removing the glass substrate. (d) Lithography, etching and growth electrode [11].

Fig. 2.  (a) Si-based laser pulse lasing P -I curves at room temperature. (b) P -I curves of Si-and InP-based laser with the same structure [11].

Fig. 3.  (Color online) The flow chart of InAs/GaAs quantum dot laser on silicon waveguide.

Fig. 4.  SEM image of bonding GaAs laser structure to silicon ridge structure [12].

Fig. 5.  (Color online) The structure, P -I curves and spectra of InAs/GaAs quantum dot laser on Si substrate. (a) Cross-sectional schematic diagram of hybrid GaAs/Si QD laser. (b) Cross-sectional TEM image of the InAs/GaAs quantum dot laser on Si substrate. The two insets show detailed image and atomic force microscope image of the InAs/GaAs quantum dot layers, respectively. (c) P -I curve of the laser for pulsed electrical pumping at RT. The inset shows I-V characteristics of the laser. (d, e) Spectra of hybrid GaAs/Si QD laser at current densities of 140 A/cm2 and 380 A/ cm2 [13].

Fig. 6.  (Color online) Process of DVS-BCB adhesive bonding [17].

Fig. 7.  (Color online) Cross-sectional schematic diagram of hybrid Ⅲ-Ⅴ/Si laser based on BCB bonding [18].

Fig. 8.  (a) Fundamental optical mode of laser structure. (b) SEM image of Ⅲ-Ⅴ chip bonded on Si rib waveguide with BCB bonding [18].

Fig. 9.  (Color online) P -I curves of hybrid lasers with different cavity length in CW operation [18].

Fig. 10.  (a) SEM image of the laser and (b) P -I curves of the laser before and after the growth of the P-type electrode [20].

Fig. 11.  (Color online) Process of hybrid laser. (a) Lithography and etching. (b) Lithography and growth of SiO2 insulating layer. (c) Growth of n-electrode. (d) Growth of p-electrode [21].

Fig. 12.  (Color online) (a) Spectra of the silicon-based micro ring laser with eight wavelengths. (b) Micrograph of the silicon-based micro ring laser with eight wavelengths [22].

Fig. 13.  (a) Cross-sectional schematic of hybrid InAs/GaAs QD laser on Si substrate. (b) Cross-sectional SEM image of the InAs/GaAs QD laser structure on Si substrate [26].

Fig. 14.  (Color online) P -I curves of the InAs/GaAs QD laser on Si substrate at room temperature. Insets show the electroluminescence spectra of hybrid laser at current densities of 290 and 830 A/cm2, respectively [25].

Fig. 15.  (Color online) The cross-sectional schematic of hybrid InGaAsP-Si laser [28].

Fig. 16.  (a) SEM image of the cross section of the InGaAsP MQW laser on Si. Inset shows enlarged SEM image of the optical coupling area. (b) A near-field image showing the lasing of the hybrid laser [28].

Fig. 17.  (Color online) P -I curves of the hybrid InGaAsP/Si laser in continuous-wave operation at various temperatures [28].

Fig. 18.  (Color online) (a) Cross-sectional schematic of hybrid InGaAsP/Si laser with ITO layer. (b) SEM image of the hybrid InGaAsP/Si laser ITO layer [29].

Fig. 19.  (Color online) The schematic diagram of InGaAsP hybrid laser on Si waveguide [30].

Fig. 20.  (Color online) Typical curves of light output power and voltage versus current for the laser in pulsed operation before and after bonding at RT. Inset shows P -I curve for the maximum single-facet output power of the InP: buried hetero structure laser after bonding at RT [30].

Fig. 21.  (Color online) (a) Cross-sectional schematic diagram of the hybrid InGaAsP/Si laser buried ridge stripe (BRS) structure. (b) The process of the hybrid BRS structure laser [31].

Fig. 22.  (Color online) (a) The structure of InP/Si hybrid laser with photoresist-assisted ZnO bonding method. (b) SEM image of InP bonded on Si waveguide with 0.5 mol/L ZnO [32].

Fig. 23.  (Color online) The structure of GaAs/Si hybrid laser with PVA-assisted ITO bonding method.

Table 1.   Comparison of various bonding methods in direct bonding technique [10].

Table 2.   Bonding metals and functions [27].

[1]
Fang A W, Park H, Cohen O, et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203 doi: 10.1364/OE.14.009203
[2]
Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photon, 2010, 4(8): 511 doi: 10.1038/nphoton.2010.167
[3]
Liang Di, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3(3):1782 doi: 10.3390/ma3031782
[4]
Chen Hongda. Microelectronic and optoelectronic integrated technology. Beijing: Publishing House of Electronics Industry, 2008
[5]
Zhao Hongquan. Research of Si and InP bonding and the development of Si based InGaAsP laser. Doctoral Dissertation, Institute of Semiconductors, Chinese Academy of Sciences, 2006
[6]
Wang Xiaoqing, Yu Yude, Ning Jin. Researching the silicon direct wafer bonding with interfacial SiO2 layer. Journal of Semiconductors, 2016, 37(5): 056001 doi: 10.1088/1674-4926/37/5/056001
[7]
Lao Chunfang, Cao Yanfeng, Wu Huizhen, et al. Fabrication of InAsP/InGaAsP quantum-well 1.3 μm VCSELs by direct wafer-bonding. Journal of Semiconductors, 2008, 11: 2286 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?flag=1&file_no=08042602&journal_id=bdtxbcn
[8]
Taylor G W, Evaldsson P A. Temperature dependent operation of the vertical cavity surface emitting laser. IEEE J Quantum Electron, 1994, 30(10): 2262 doi: 10.1109/3.328601
[9]
Esser R H, Hobart K D, Kub F J. Directional diffusion and void formation at a Si (001) bonded wafer interface. J Appl Phys, 2002, 92(4): 1945 doi: 10.1063/1.1491590
[10]
Tong Q Y, Goesele U. Semiconductor wafer bonding: science and technology. John Wiley, 1999
[11]
Wada H, Kamijoh T. 1.3 μm InP-InGaAsP lasers fabricated on Si substrates by wafer bonding. IEEE J Sel Topics Quantum Electron, 1997, 3(3): 937 doi: 10.1109/2944.640647
[12]
Tanabe K, Watanabe K, Arakawa Y. 1.3 μm InAs/GaAs quantum dot lasers on Si rib structures with current injection across direct-bonded GaAs/Si heterointerfaces. Optics Express, 2012, 20(26): B315 doi: 10.1364/OE.20.00B315
[13]
Tanabe K, Watanabe K, Arakawa Y. Ⅲ-Ⅴ/Si hybrid photonic devices by direct fusion bonding. Scientific Reports, 2012, 2: 349
[14]
Eaton W P, Risbud S H, Smith R L. Silicon wafer-to-wafer bonding at T < 200℃ with polymethylmethacrylate. Appl Phys Lett, 1994, 65(4): 439 doi: 10.1063/1.112326
[15]
Quenzer H J, Benecke W. Low-temperature silicon wafer bonding. Sensors and Actuators A, 1992, 32(1): 340 https://www.researchgate.net/publication/245079598_Low-temperature_silicon_wafer_bonding
[16]
Zhao Huan. The growth of 1.3-1.55 μm GaInNAs(Sb)/GaAs quantum well and fabrication of laser. Doctoral Dissertation. Institute of Semiconductors, Chinese Academy of Sciences, 2006
[17]
Roelkens G, Van Campenhout J, Brouckaert J, et al. Ⅲ-Ⅴ/Si photonics by die-to-wafer bonding. Materials Today, 2007, 10(7): 36
[18]
Stanković S, Jones R, Sysak M N, et al. 1310-nm hybrid Ⅲ-Ⅴ/Si Fabry-Pérot laser based on adhesive bonding. IEEE Photon Technol Lett, 2011, 23(23): 1781 doi: 10.1109/LPT.2011.2169397
[19]
Yang Yuede, Sui Shaoshuai, Tang Mingying, et al. Dielectric assisted bonding of Ⅲ-Ⅴ/Si hybrid metal lasers. Laser & Optoelectronics Progress, 2014, 51(11): 88
[20]
Yang Yuede, Sui Shaoshuai, Tang Mingying, et al. Metal limited medium assisted bonding Ⅲ-Ⅴ/Silicon base hybrid integrated laser for optical interconnection. Laser Optoelectron Progress, 2014, 51(11): 111401
[21]
Sui S S, Tang M Y, Yang Y D, et al. Investigation of hybrid microring lasers adhesively bonded on silicon wafer. Photon Res, 2015, 3(6): 289 doi: 10.1364/PRJ.3.000289
[22]
Sui S S, Tang M Y, Huang Y Z, et al. Eight-wavelength hybrid Si/AlGaInAs/InP microring laser array. Electron Lett, 2015, 51(6): 506 doi: 10.1049/el.2014.4442
[23]
Sui S S, Tang M Y, Du Y, et al. A twelve-wavelength hybrid microdisk laser array coupled to a SOI bus waveguide. Asia Communications and Photonics Conference, 2014: AW4B.2
[24]
Sui S S, Tang M Y, Yang Y D, et al. Sixteen-wavelength hybrid AlGaInAs/Si microdisk laser array. IEEE J Quantum Electron, 2015, 51(4): 1 https://www.researchgate.net/publication/273395374_Sixteen-Wavelength_Hybrid_AlGaInAsSi_Microdisk_Laser_Array
[25]
Tanabe K, Guimard D, Bordel D, et al. Fabrication of electrically pumped InAs/GaAs quantum dot lasers on Si substrates by Aumediated wafer bonding. Physica Status Solidi C, 2011, 8(2): 319 doi: 10.1002/pssc.v8.2
[26]
Tanabe K, Guimard D, Bordel D, et al. Electrically pumped 1.3 μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer. Optics Express, 2010, 18(10): 10604 doi: 10.1364/OE.18.010604
[27]
Ting C, Tao H, Pan J Q, et al. Electrically pumped room-temperature pulsed InGaAsP-Si hybrid lasers based on metal bonding. Chinese Physics Letters, 2009, 26(6): 064211 doi: 10.1088/0256-307X/26/6/064211
[28]
Hong T, Ran G Z, Chen T, et al. A selective-area metal bonding InGaAsP-Si laser. IEEE Photon Technol Lett, 2010, 22(15): 1141 doi: 10.1109/LPT.2010.2050683
[29]
Hong T, Li Y P, Chen W X, et al. Bonding InGaAsP/ITO/Si hybrid laser with ITO as cathode and light-coupling material. IEEE Photon Technol Lett, 2012, 24(8): 712 doi: 10.1109/LPT.2012.2187328
[30]
Yuan Lei, Tao Li, Yu Haoyong, et al. Hybrid InGaAsP-Si evanescent laser by selective-area metal-bonding method. IEEE Photonics Technology Letters, 2013, 25(12): 1180 doi: 10.1109/LPT.2013.2262265
[31]
Yuan Lijun, Tao Li, Chen Weixi, et al. A buried ridge stripe structure InGaAsP-Si hybrid laser. IEEE Photonics Technology Letters, 2015, 27(4): 352 doi: 10.1109/LPT.2014.2372892
[32]
Huang Xinnan, Gao Yonghao, Xu Xingsheng. Bonding III-V material to SOI with transparent and conductive ZnO film at low temperature. Optics Express, 2014, 22(12): 14285 doi: 10.1364/OE.22.014285
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3301 Times PDF downloads: 61 Times Cited by: 0 Times

    History

    Received: 06 May 2016 Revised: 25 May 2016 Online: Published: 01 December 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bo Ren, Yan Hou, Yanan Liang. Research progress of Ⅲ-Ⅴ laser bonding to Si[J]. Journal of Semiconductors, 2016, 37(12): 124001. doi: 10.1088/1674-4926/37/12/124001 B Ren, Y Hou, Y N Liang. Research progress of Ⅲ-Ⅴ laser bonding to Si[J]. J. Semicond., 2016, 37(12): 124001. doi: 10.1088/1674-4926/37/12/124001.Export: BibTex EndNote
      Citation:
      Bo Ren, Yan Hou, Yanan Liang. Research progress of Ⅲ-Ⅴ laser bonding to Si[J]. Journal of Semiconductors, 2016, 37(12): 124001. doi: 10.1088/1674-4926/37/12/124001

      B Ren, Y Hou, Y N Liang. Research progress of Ⅲ-Ⅴ laser bonding to Si[J]. J. Semicond., 2016, 37(12): 124001. doi: 10.1088/1674-4926/37/12/124001.
      Export: BibTex EndNote

      Research progress of Ⅲ-Ⅴ laser bonding to Si

      doi: 10.1088/1674-4926/37/12/124001
      More Information
      • Corresponding author: Ren Bo, Email:renbo@semi.ac.cn
      • Received Date: 2016-05-06
      • Revised Date: 2016-05-25
      • Published Date: 2016-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return