ARTICLES 

Simulation and application of external quantum efficiency of solar cells based on spectroscopy

Guanlin Chen1, 2, 3, Can Han1, 2, 3, Lingling Yan1, 2, 3, Yuelong Li1, 2, 3, Ying Zhao1, 2, 3 and Xiaodan Zhang1, 2, 3,

+ Author Affiliations

 Corresponding author: Xiaodan Zhang, xdzhang@nankai.edu.cn

PDF

Turn off MathJax

Abstract: In this study, a method for optical simulation of external quantum efficiency (EQE) spectra of solar cells based on spectroscopy is proposed, which is based on the tested transmittance and reflectance spectra. First, to obtain a more accurate information of refractive index and extinction coefficient values, we modified the reported optical constants from the measured reflectance and transmittance spectra. The obtained optical constants of each layer were then collected to simulate the EQE spectra of the device. This method provides a simple, accurate and versatile way to obtain the actual optical constants of different layers. The EQE simulation approach was applied to the flat and textured heterojunctions with intrinsic layers (HIT) solar cells, respectively, which showed a perfect matching between the calculation results and the experimental data. Furthermore, the specific optical losses in different devices were analyzed.

Key words: EQE simulationoptical constantsspectroscopy



[1]
Ding K, Kirchartz T, Pieters B E, et al. Characterization and simulation of a-Si:H/μc-Si:H tandem solar cells. Sol Energy Mater Sol Cells, 2011, 95(12), 3318 doi: 10.1016/j.solmat.2011.07.023
[2]
Jošt M, Köhnen E, Morales-Vilches A B, et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ Sci, 2018, 11(12), 3511 doi: 10.1039/C8EE02469C
[3]
Macleod H A. Thin-film optical filters. New York: Taylor and Francis Ltd, 2001
[4]
Hara T, Maekawa T, Minoura S, et al. Quantitative assessment of optical gain and loss in submicron-textured CuIn1− xG a xSe2 solar cells fabricated by three-stage coevaporation. Phys Rev Appl, 2014, 2(3), 034012 doi: 10.1103/PhysRevApplied.2.034012
[5]
Nakane A, Tampo H, Tamakoshi M, et al. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. J Appl Phys, 2016, 120(6), 064505 doi: 10.1063/1.4960698
[6]
Nakane A, Fujimoto S, Fujiwara H. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells. J Appl Phys, 2017, 122(20), 203101 doi: 10.1063/1.4997063
[7]
Aspnes D E, Studna A. A high precision scanning ellipsometer. Appl Opt, 1975, 14(1), 220 doi: 10.1364/AO.14.000220
[8]
Jakopic G, Papousek W. Unified analytical inversion of reflectometric and ellipsometric data of absorbing media. Appl Opt, 2000, 39(16), 2727 doi: 10.1364/AO.39.002727
[9]
Chiu M H, Lee J Y, Su D C. Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry. Appl Opt, 1999, 38(19), 4047 doi: 10.1364/AO.38.004047
[10]
Chiu M H, Lee J Y, Su D C. Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry. Appl Opt, 1997, 36(13), 2936 doi: 10.1364/AO.36.002936
[11]
Cheng Y Y, Wyant J C. Multiple-wavelength phase-shifting interferometry. Appl Opt, 1985, 24(6), 804 doi: 10.1364/AO.24.000804
[12]
Cheng Y Y, Wyant J C. Two-wavelength phase shifting interferometry. Appl Opt, 1984, 23(24), 4539 doi: 10.1364/AO.23.004539
[13]
Leveque G, Villachon-Renard Y. Determination of optical constants of thin film from reflectance spectra. Appl Opt, 1990, 29(22), 3207 doi: 10.1364/AO.29.003207
[14]
Siqueiros J M, Regalado L E, Machorro R. Determination of (n, k) for absorbing thin films using reflectance measurements. Appl Opt, 1988, 27(20), 4260 doi: 10.1364/AO.27.004260
[15]
Al-Kuhaili M F, Khawaja E E, Durrani S M. Determination of the optical constants (n and k) of inhomogeneous thin films with linear index profiles. Appl Opt, 2006, 45(19), 4591 doi: 10.1364/AO.45.004591
[16]
Cisneros J I. Optical characterization of dielectric and semiconductor thin films by use of transmission data. Appl Opt, 1998, 37(22), 5262 doi: 10.1364/AO.37.005262
[17]
Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl Opt, 2002, 41(19), 3978 doi: 10.1364/AO.41.003978
[18]
[19]
Taguchi M, Yano A, Tohoda S, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt, 2014, 4(1), 96 doi: 10.1109/JPHOTOV.2013.2282737
[20]
Stroud K A. Engineering mathematics. New York: Springer-Verlag, 1992
[21]
Nenkov M, Pencheva T. Calculation of thin-film optical constants by transmittance-spectra fitting. J Opt Soc Am A, 1998, 15(7), 1852 doi: 10.1364/JOSAA.15.001852
[22]
Likhachev D A. Practical method for optical dispersion model selection and parameters variations in scatterometry analysis with variable n&k's. Thin Solid Films, 2014, 562, 90 doi: doi.org/10.1016/j.tsf.2014.03.082
[23]
Holman Z C, Filipič M, Descoeudres A, et al. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J Appl Phys, 2013, 113(1), 013107 doi: 10.1063/1.4772975
[24]
Holman Z C, Descoeudres A, Barraud L, et al. Current losses at the front of silicon heterojunction solar cells. IEEE J Photovolt, 2012, 2(1), 7 doi: 10.1109/JPHOTOV.2011.2174967
[25]
Chambouleyron I, Ventura S, Birgin E, et al. Optical constants and thickness determination of very thin amorphous semiconductor films. J Appl Phys, 2002, 92(6), 3093 doi: 10.1063/1.1500785
[26]
Zhu F, Singh J. Study of the optical properties of amorphous silicon solar cells using admittance analysis. J Non-Cryst Solids, 1993, 152(1), 75 doi: 10.1016/0022-3093(93)90446-5
[27]
Lin C W, Chen K P, Su M C, et al. Admittance loci design method for multilayer surface plasmon resonance devices. Sens Actuators B, 2006, 117(1), 219 doi: 10.1016/j.snb.2005.11.030
[28]
Theuring M, Geissendörfer S, Vehse M, et al. Thin metal layer as transparent electrode in n–i–p amorphous silicon solar cells. EPJ Photovolt, 2014, 5(55205), 55205 doi: 10.1051/epjpv/2014004
[29]
Margulis G Y, Hardin B E, Ding I K, et al. Parasitic absorption and internal quantum efficiency measurements of solid-state dye sensitized solar cells. Adv Energy Mater, 2013, 3(7), 959 doi: 10.1002/aenm.201300057
[30]
Zhang D, Digdaya I A, Santbergen R, et al. Design and fabrication of a SiO x/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Sol Energy Mater Sol Cells, 2013, 117(14), 132 doi: 10.1016/j.sojmat.2013.05.044
[31]
Ghica C, Nistor L C, Teodorescu V S, et al. Laser treatment of plasma-hydrogenated silicon wafers for thin layer exfoliation. J Appl Phys, 2011, 109(6), 063518 doi: 10.1063/1.3560538
[32]
Wang H, Liu X, Zhang Z M. Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm. Int J Thermophys, 2013, 34(2), 213 doi: 10.1007/s10765-013-1414-2
[33]
Davis K, Seigneur H, Jiang K, et al. Optical modeling of the internal back reflectance of various c-Si dielectric stacks featuring AlOx, SiNx, TiO2 and SiO2. 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012: 1032
[34]
McPeak K M, Jayanti S V, Kress S J, et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2015, 2(3), 326 doi: 10.1021/ph5004237
[35]
Seif J P, Descoeudres A, Filipič M, et al. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J Appl Phys, 2014, 115(2), 024502 doi: 10.1063/1.4861404
[36]
Sritharathikhun J, Yamamoto H, Miyajima S, et al. Optimization of amorphous silicon oxide buffer layer for high-efficiency p-type hydrogenated microcrystalline silicon oxide/n-type crystalline silicon heterojunction solar cells. J Appl Phys, 2008, 47(11R), 8452 doi: 10.1155/2014/251508
[37]
Fujiwara H, Kaneko T, Kondo M. Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells. Appl Phys Lett, 2007, 91(13), 133508 doi: 10.1063/1.2790815
[38]
Battaglia C, De Nicolas S M, De Wolf S, et al. Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett, 2014, 104(11), 113902 doi: 10.1063/1.4868880
[39]
Zhang X, Zhao Y, Gao Y, et al. Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells. J Non-Cryst Solids, 2006, 352(9–20), 1863 doi: 10.1016/j.jnoncrysol.2005.12.047
[40]
Holman Z C, Descoeudres A, Wolf S D, et al. Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors. IEEE J Photovolt, 2013, 3(4), 1243 doi: 10.1109/JPHOTOV.2013.2276484
[41]
Silva K S B D, Keast V J, Gentle A, et al. Optical properties and oxidation of α-phase Ag–Al thin films. Nanotechnology, 2017, 28(9), 095202 doi: 10.1088/1361-6528/aa5782
[42]
Matsuki N, Fujiwara H. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry. J Appl Phys, 2013, 114(4), 18 doi: 10.1063/1.4812479
[43]
Watanabe K, Matsuki N, Fujiwara H. Ellipsometry Characterization of hydrogenated amorphous silicon layers formed on textured crystalline silicon substrates. Appl Phys Express, 2010, 3(11), 116604 doi: 10.1143/APEX.3.116604
Fig. 1.  (Color online) Structures of (a) flat and (b) textured HIT solar cell in this study.

Fig. 2.  (Color online) The fitting results of measured/calculated transmittance and reflectance curves of different layers. (a) ITO. (b) p-a-Si:H. (c) i-a-Si:H. (d) n-a-Si:H.

Fig. 3.  (Color online) The calculated results of optical constants of different layers. (a) ITO. (b) p-a-Si:H. (c) i-a-Si:H. (d) n-a-Si:H.

Fig. 4.  (Color online) Schematic optical model of (a) multi-layer system with all coherent layers and (b) multi-layer system with coherent and incoherent layers.

Fig. 5.  (Color online) The fitting results of measured/calculated transmittance and reflectance curves on a modified c-Si thickness of 8000 nm with (a) t = 1 in Eq. (10), and (b) t = 10 in Eq. (10).

Fig. 6.  (Color online) The calculation results of EQE simulation on the flat HIT solar cells. (a) The fitting results between the measured EQE and different calculated curves. (b) and (c) The EQE sensitivity on the thickness of p-a-Si:H and i-a-Si:H layers, respectively.

Fig. 7.  (Color online) Optical analysis of the flat HIT solar cell. (a) Measured/calculated EQE results. (b) The contribution of each layer on the current loss (or gain) in the device.

Fig. 8.  (Color online) Calculation results of flat HIT solar cell with p-a-SiOx:H as the front doping layer. (a) EQE calculation results. (b) The contribution of each layer on the current loss (or gain) in the device.

Fig. 9.  (Color online) Calculation results of flat HIT solar cell with Ag/Al electrode as rear metal layer. (a) EQE calculation results. (b) The contribution of each layer on the current loss (or gain) in the device.

Fig. 10.  (Color online) Optical analysis of the textured HIT solar cell. (a) Measured/calculated EQE calculation results. (b) The contribution of each layer on the current loss (or gain) in the device.

[1]
Ding K, Kirchartz T, Pieters B E, et al. Characterization and simulation of a-Si:H/μc-Si:H tandem solar cells. Sol Energy Mater Sol Cells, 2011, 95(12), 3318 doi: 10.1016/j.solmat.2011.07.023
[2]
Jošt M, Köhnen E, Morales-Vilches A B, et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy Environ Sci, 2018, 11(12), 3511 doi: 10.1039/C8EE02469C
[3]
Macleod H A. Thin-film optical filters. New York: Taylor and Francis Ltd, 2001
[4]
Hara T, Maekawa T, Minoura S, et al. Quantitative assessment of optical gain and loss in submicron-textured CuIn1− xG a xSe2 solar cells fabricated by three-stage coevaporation. Phys Rev Appl, 2014, 2(3), 034012 doi: 10.1103/PhysRevApplied.2.034012
[5]
Nakane A, Tampo H, Tamakoshi M, et al. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis. J Appl Phys, 2016, 120(6), 064505 doi: 10.1063/1.4960698
[6]
Nakane A, Fujimoto S, Fujiwara H. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells. J Appl Phys, 2017, 122(20), 203101 doi: 10.1063/1.4997063
[7]
Aspnes D E, Studna A. A high precision scanning ellipsometer. Appl Opt, 1975, 14(1), 220 doi: 10.1364/AO.14.000220
[8]
Jakopic G, Papousek W. Unified analytical inversion of reflectometric and ellipsometric data of absorbing media. Appl Opt, 2000, 39(16), 2727 doi: 10.1364/AO.39.002727
[9]
Chiu M H, Lee J Y, Su D C. Complex refractive-index measurement based on Fresnel's equations and the uses of heterodyne interferometry. Appl Opt, 1999, 38(19), 4047 doi: 10.1364/AO.38.004047
[10]
Chiu M H, Lee J Y, Su D C. Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry. Appl Opt, 1997, 36(13), 2936 doi: 10.1364/AO.36.002936
[11]
Cheng Y Y, Wyant J C. Multiple-wavelength phase-shifting interferometry. Appl Opt, 1985, 24(6), 804 doi: 10.1364/AO.24.000804
[12]
Cheng Y Y, Wyant J C. Two-wavelength phase shifting interferometry. Appl Opt, 1984, 23(24), 4539 doi: 10.1364/AO.23.004539
[13]
Leveque G, Villachon-Renard Y. Determination of optical constants of thin film from reflectance spectra. Appl Opt, 1990, 29(22), 3207 doi: 10.1364/AO.29.003207
[14]
Siqueiros J M, Regalado L E, Machorro R. Determination of (n, k) for absorbing thin films using reflectance measurements. Appl Opt, 1988, 27(20), 4260 doi: 10.1364/AO.27.004260
[15]
Al-Kuhaili M F, Khawaja E E, Durrani S M. Determination of the optical constants (n and k) of inhomogeneous thin films with linear index profiles. Appl Opt, 2006, 45(19), 4591 doi: 10.1364/AO.45.004591
[16]
Cisneros J I. Optical characterization of dielectric and semiconductor thin films by use of transmission data. Appl Opt, 1998, 37(22), 5262 doi: 10.1364/AO.37.005262
[17]
Katsidis C C, Siapkas D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl Opt, 2002, 41(19), 3978 doi: 10.1364/AO.41.003978
[18]
[19]
Taguchi M, Yano A, Tohoda S, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt, 2014, 4(1), 96 doi: 10.1109/JPHOTOV.2013.2282737
[20]
Stroud K A. Engineering mathematics. New York: Springer-Verlag, 1992
[21]
Nenkov M, Pencheva T. Calculation of thin-film optical constants by transmittance-spectra fitting. J Opt Soc Am A, 1998, 15(7), 1852 doi: 10.1364/JOSAA.15.001852
[22]
Likhachev D A. Practical method for optical dispersion model selection and parameters variations in scatterometry analysis with variable n&k's. Thin Solid Films, 2014, 562, 90 doi: doi.org/10.1016/j.tsf.2014.03.082
[23]
Holman Z C, Filipič M, Descoeudres A, et al. Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cells. J Appl Phys, 2013, 113(1), 013107 doi: 10.1063/1.4772975
[24]
Holman Z C, Descoeudres A, Barraud L, et al. Current losses at the front of silicon heterojunction solar cells. IEEE J Photovolt, 2012, 2(1), 7 doi: 10.1109/JPHOTOV.2011.2174967
[25]
Chambouleyron I, Ventura S, Birgin E, et al. Optical constants and thickness determination of very thin amorphous semiconductor films. J Appl Phys, 2002, 92(6), 3093 doi: 10.1063/1.1500785
[26]
Zhu F, Singh J. Study of the optical properties of amorphous silicon solar cells using admittance analysis. J Non-Cryst Solids, 1993, 152(1), 75 doi: 10.1016/0022-3093(93)90446-5
[27]
Lin C W, Chen K P, Su M C, et al. Admittance loci design method for multilayer surface plasmon resonance devices. Sens Actuators B, 2006, 117(1), 219 doi: 10.1016/j.snb.2005.11.030
[28]
Theuring M, Geissendörfer S, Vehse M, et al. Thin metal layer as transparent electrode in n–i–p amorphous silicon solar cells. EPJ Photovolt, 2014, 5(55205), 55205 doi: 10.1051/epjpv/2014004
[29]
Margulis G Y, Hardin B E, Ding I K, et al. Parasitic absorption and internal quantum efficiency measurements of solid-state dye sensitized solar cells. Adv Energy Mater, 2013, 3(7), 959 doi: 10.1002/aenm.201300057
[30]
Zhang D, Digdaya I A, Santbergen R, et al. Design and fabrication of a SiO x/ITO double-layer anti-reflective coating for heterojunction silicon solar cells. Sol Energy Mater Sol Cells, 2013, 117(14), 132 doi: 10.1016/j.sojmat.2013.05.044
[31]
Ghica C, Nistor L C, Teodorescu V S, et al. Laser treatment of plasma-hydrogenated silicon wafers for thin layer exfoliation. J Appl Phys, 2011, 109(6), 063518 doi: 10.1063/1.3560538
[32]
Wang H, Liu X, Zhang Z M. Absorption coefficients of crystalline silicon at wavelengths from 500 nm to 1000 nm. Int J Thermophys, 2013, 34(2), 213 doi: 10.1007/s10765-013-1414-2
[33]
Davis K, Seigneur H, Jiang K, et al. Optical modeling of the internal back reflectance of various c-Si dielectric stacks featuring AlOx, SiNx, TiO2 and SiO2. 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012: 1032
[34]
McPeak K M, Jayanti S V, Kress S J, et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2015, 2(3), 326 doi: 10.1021/ph5004237
[35]
Seif J P, Descoeudres A, Filipič M, et al. Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. J Appl Phys, 2014, 115(2), 024502 doi: 10.1063/1.4861404
[36]
Sritharathikhun J, Yamamoto H, Miyajima S, et al. Optimization of amorphous silicon oxide buffer layer for high-efficiency p-type hydrogenated microcrystalline silicon oxide/n-type crystalline silicon heterojunction solar cells. J Appl Phys, 2008, 47(11R), 8452 doi: 10.1155/2014/251508
[37]
Fujiwara H, Kaneko T, Kondo M. Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells. Appl Phys Lett, 2007, 91(13), 133508 doi: 10.1063/1.2790815
[38]
Battaglia C, De Nicolas S M, De Wolf S, et al. Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett, 2014, 104(11), 113902 doi: 10.1063/1.4868880
[39]
Zhang X, Zhao Y, Gao Y, et al. Influence of front electrode and back reflector electrode on the performances of microcrystalline silicon solar cells. J Non-Cryst Solids, 2006, 352(9–20), 1863 doi: 10.1016/j.jnoncrysol.2005.12.047
[40]
Holman Z C, Descoeudres A, Wolf S D, et al. Record infrared internal quantum efficiency in silicon heterojunction solar cells with dielectric/metal rear reflectors. IEEE J Photovolt, 2013, 3(4), 1243 doi: 10.1109/JPHOTOV.2013.2276484
[41]
Silva K S B D, Keast V J, Gentle A, et al. Optical properties and oxidation of α-phase Ag–Al thin films. Nanotechnology, 2017, 28(9), 095202 doi: 10.1088/1361-6528/aa5782
[42]
Matsuki N, Fujiwara H. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry. J Appl Phys, 2013, 114(4), 18 doi: 10.1063/1.4812479
[43]
Watanabe K, Matsuki N, Fujiwara H. Ellipsometry Characterization of hydrogenated amorphous silicon layers formed on textured crystalline silicon substrates. Appl Phys Express, 2010, 3(11), 116604 doi: 10.1143/APEX.3.116604
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3882 Times PDF downloads: 78 Times Cited by: 0 Times

    History

    Received: 01 April 2019 Revised: 18 May 2019 Online: Accepted Manuscript: 02 September 2019Uncorrected proof: 03 September 2019Published: 09 December 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, Xiaodan Zhang. Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. Journal of Semiconductors, 2019, 40(12): 122701. doi: 10.1088/1674-4926/40/12/122701 G L Chen, C Han, L L Yan, Y L Li, Y Zhao, X D Zhang, Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. J. Semicond., 2019, 40(12): 122701. doi: 10.1088/1674-4926/40/12/122701.Export: BibTex EndNote
      Citation:
      Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, Xiaodan Zhang. Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. Journal of Semiconductors, 2019, 40(12): 122701. doi: 10.1088/1674-4926/40/12/122701

      G L Chen, C Han, L L Yan, Y L Li, Y Zhao, X D Zhang, Simulation and application of external quantum efficiency of solar cells based on spectroscopy[J]. J. Semicond., 2019, 40(12): 122701. doi: 10.1088/1674-4926/40/12/122701.
      Export: BibTex EndNote

      Simulation and application of external quantum efficiency of solar cells based on spectroscopy

      doi: 10.1088/1674-4926/40/12/122701
      More Information
      • Corresponding author: xdzhang@nankai.edu.cn
      • Received Date: 2019-04-01
      • Revised Date: 2019-05-18
      • Published Date: 2019-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return