SEMICONDUCTOR INTEGRATED CIRCUITS

An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

Yuan Wang, Xu Zhang, Ming Liu, Peng Li and Hongda Chen

+ Author Affiliations

 Corresponding author: Zhang Xu, Email:zhangxu@semi.ac.cn

PDF

Abstract: This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery frontend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full-wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neurostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neurostimulators.

Key words: high-voltage techniquesimplantable biomedical devicesinductive power transmissionlinear regulatorneurostimulation



[1]
Ghovanloo M, Najafi K. A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators. IEEE Trans Biomedical Eng, 2005, 52(1):97 doi: 10.1109/TBME.2004.839797
[2]
Zhang Xu, Pei Weihua, Huang Beiju, et al. Low power CMOS preamplifier for neural recording applications. Journal of Semiconductors, 2010, 31(4):045002 doi: 10.1088/1674-4926/31/4/045002
[3]
Gui Yun, Zhang Xu, Wang Yuan, et al. A multi-channel fully differential programmable integrated circuit for neural recording application. Journal of Semiconductors, 2013, 34(10):105009 doi: 10.1088/1674-4926/34/10/105009
[4]
Thil M A, Gerard B, Jarvis J C, et al. Tissue-electrode interface changes in the first week after spiral cuff implantation: preliminary results. 9th Annual Conference of the International FES Society, Bournemouth, UK, 2004
[5]
Mounai F, Sawan M. New neurostimulation strategy and corresponding implantable device to enhance bladder functions. Biomed Eng, Trends Electron, Commun Softw, InTech, 2011
[6]
Sit J, Sarpeshkar R. A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans Biomedical Circuits and Systems, 2007, 1(3):172 doi: 10.1109/TBCAS.2007.911631
[7]
Constandinou T G, Georgiou J, Toumazou C. A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Trans Biomedical Circuits Syst, 2008, 2(2):106 doi: 10.1109/TBCAS.2008.927238
[8]
Mounaim F, Sawan M. Toward a fully integrated neurostimulator with inductive power recovery front-end. IEEE Trans Biomedical Circuits and Systems, 2012, 6(4):309 doi: 10.1109/TBCAS.2012.2185796
[9]
Williams I, Constandinou T G. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans Biomedical Circuits and Systems, 2013, 7(2):129 doi: 10.1109/TBCAS.2013.2256906
[10]
Mounaim F, Sawan M. Integrated high-voltage inductive power and data-recovery front end dedicated to implantable devices. IEEE Trans Biomedical Circuits and Systems, 2011, 5(3):283 doi: 10.1109/TBCAS.2010.2103558
[11]
Huang Y C, Ker M D, Lin C Y. Design of negative high voltage generator for biphasic stimulator with soc integration consideration. IEEE Biomedical Circuits and Systems Conference, Hsinchu, 2012
[12]
Ma Q, Haider M R, Islam S K. A high efficiency inductive power link and backward telemetry for biomedical applications. IEEE Sensors, Kona, HI, 2010
[13]
Wang Yi, He Lenian, Yan Xiaolang. A 30 nA temperature-independent CMOS current reference and its application in an LDO. Chinese Journal of Semiconductors, 2006, 27(9):1657 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=06021403&flag=1
[14]
Lau S K, Leung K N, Mok P K. Analysis of low-dropout regulator topologies for low-voltage regulation. IEEE Conference on Electron Devices and Solid-State Circuits, 2003:379
[15]
Mounaim F, Sawan M, El-Gamal M. Fully-integrated inductive power recovery front-end dedicated to implantable devices. IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, 2008
Fig. 1.  Architecture of a conventional inductive-powered neurostimulator

Fig. 2.  Dual power supply approach. (a) Step-up. (b) Step-down

Fig. 3.  Structure of the proposed neurostimulator

Fig. 4.  Typical application of the proposed chip

Fig. 5.  Schematic of the (a) HV rectifier and (b) HV series regulator

Fig. 6.  Detailed schematic of the proposed linear regulator

Fig. 7.  (a) Structure of a conventional monopolar current stimulator, and (b) current waveform of biphasic stimulus pulses

Fig. 8.  Structure of the proposed HV stimulator

Fig. 9.  Micrograph of the proposed chip

Fig. 10.  The measured waveforms of the rectifier

Fig. 11.  The oscilloscope capture of the regulator startup and large input variations

Fig. 12.  The linearity of DAC: load current versus digital code

Fig. 13.  Measured INL and DNL of the proposed DAC

Fig. 14.  Output waveforms of the stimulator

Table 1.   Performance comparison of HV power-recovery frontend

Table 2.   Specification and performance comparison of HV stimulator

[1]
Ghovanloo M, Najafi K. A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators. IEEE Trans Biomedical Eng, 2005, 52(1):97 doi: 10.1109/TBME.2004.839797
[2]
Zhang Xu, Pei Weihua, Huang Beiju, et al. Low power CMOS preamplifier for neural recording applications. Journal of Semiconductors, 2010, 31(4):045002 doi: 10.1088/1674-4926/31/4/045002
[3]
Gui Yun, Zhang Xu, Wang Yuan, et al. A multi-channel fully differential programmable integrated circuit for neural recording application. Journal of Semiconductors, 2013, 34(10):105009 doi: 10.1088/1674-4926/34/10/105009
[4]
Thil M A, Gerard B, Jarvis J C, et al. Tissue-electrode interface changes in the first week after spiral cuff implantation: preliminary results. 9th Annual Conference of the International FES Society, Bournemouth, UK, 2004
[5]
Mounai F, Sawan M. New neurostimulation strategy and corresponding implantable device to enhance bladder functions. Biomed Eng, Trends Electron, Commun Softw, InTech, 2011
[6]
Sit J, Sarpeshkar R. A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans Biomedical Circuits and Systems, 2007, 1(3):172 doi: 10.1109/TBCAS.2007.911631
[7]
Constandinou T G, Georgiou J, Toumazou C. A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Trans Biomedical Circuits Syst, 2008, 2(2):106 doi: 10.1109/TBCAS.2008.927238
[8]
Mounaim F, Sawan M. Toward a fully integrated neurostimulator with inductive power recovery front-end. IEEE Trans Biomedical Circuits and Systems, 2012, 6(4):309 doi: 10.1109/TBCAS.2012.2185796
[9]
Williams I, Constandinou T G. An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans Biomedical Circuits and Systems, 2013, 7(2):129 doi: 10.1109/TBCAS.2013.2256906
[10]
Mounaim F, Sawan M. Integrated high-voltage inductive power and data-recovery front end dedicated to implantable devices. IEEE Trans Biomedical Circuits and Systems, 2011, 5(3):283 doi: 10.1109/TBCAS.2010.2103558
[11]
Huang Y C, Ker M D, Lin C Y. Design of negative high voltage generator for biphasic stimulator with soc integration consideration. IEEE Biomedical Circuits and Systems Conference, Hsinchu, 2012
[12]
Ma Q, Haider M R, Islam S K. A high efficiency inductive power link and backward telemetry for biomedical applications. IEEE Sensors, Kona, HI, 2010
[13]
Wang Yi, He Lenian, Yan Xiaolang. A 30 nA temperature-independent CMOS current reference and its application in an LDO. Chinese Journal of Semiconductors, 2006, 27(9):1657 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=06021403&flag=1
[14]
Lau S K, Leung K N, Mok P K. Analysis of low-dropout regulator topologies for low-voltage regulation. IEEE Conference on Electron Devices and Solid-State Circuits, 2003:379
[15]
Mounaim F, Sawan M, El-Gamal M. Fully-integrated inductive power recovery front-end dedicated to implantable devices. IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, 2008
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2098 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 01 April 2014 Revised: 25 April 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuan Wang, Xu Zhang, Ming Liu, Peng Li, Hongda Chen. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend[J]. Journal of Semiconductors, 2014, 35(10): 105012. doi: 10.1088/1674-4926/35/10/105012 Y Wang, X Zhang, M Liu, P Li, H D Chen. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend[J]. J. Semicond., 2014, 35(10): 105012. doi: 10.1088/1674-4926/35/10/105012.Export: BibTex EndNote
      Citation:
      Yuan Wang, Xu Zhang, Ming Liu, Peng Li, Hongda Chen. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend[J]. Journal of Semiconductors, 2014, 35(10): 105012. doi: 10.1088/1674-4926/35/10/105012

      Y Wang, X Zhang, M Liu, P Li, H D Chen. An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend[J]. J. Semicond., 2014, 35(10): 105012. doi: 10.1088/1674-4926/35/10/105012.
      Export: BibTex EndNote

      An implantable neurostimulator with an integrated high-voltage inductive power-recovery frontend

      doi: 10.1088/1674-4926/35/10/105012
      Funds:

      the National Natural Science Foundation of China 61076023

      the High-Tech-Program of China 2012AA030308

      the National Basic Research Program of China 2011CB933203

      Project supported by the National Natural Science Foundation of China (Nos. 61076023, 61178051), the National Basic Research Program of China (No. 2011CB933203), and the High-Tech-Program of China (No. 2012AA030308)

      the National Natural Science Foundation of China 61178051

      More Information
      • Corresponding author: Zhang Xu, Email:zhangxu@semi.ac.cn
      • Received Date: 2014-04-01
      • Revised Date: 2014-04-25
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return