SEMICONDUCTOR DEVICES

A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs

Jun Liu, Zhiping Yu and Lingling Sun

+ Author Affiliations

 Corresponding author: Liu Jun, Email:ljun77@163.com

PDF

Abstract: A complete and accurate surface potential based large-signal model for compound semiconductor HEMTs is presented. A surface potential equation resembling the one used in conventional MOSFET models is achieved. The analytic solutions from the traditional surface potential theory that developed in MOSFET models are inherited. For core model derivation, a novel method is used to realize a direct application of the standard surface potential model of MOSFETs for HEMT modeling, without breaking the mathematic structure. The high-order derivatives of I-V/C-V remain continuous, making the model suitable for RF large-signal applications. Furthermore, the self-heating effects and the transconductance dispersion are also modelled. The model has been verified through comparison with measured DC Ⅳ, Gummel symmetry test, CV, minimum noise figure, small-signal S-parameters up to 66 GHz and single-tone input power sweep at 29 GHz for a 4×75 μm×0.1 μm InGaAs/GaAs power pHEMT, fabricated at a commercial foundry.

Key words: surface-potential basedcompound semiconductor HEMTslarge-signalmodel



[1]
Pala V, Peng H, Wright P, et al. Integrated high frequency power converters based on GaAs pHEMT:technology characterization and design examples. IEEE Trans Power Electron, 2011, 27(99):1 http://ieeexplore.ieee.org/document/6069868/
[2]
Medjdoub F, Carlin J F, Gonschorek M, et al. Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices. IEEE International Electron Devices Meeting (IEDM), 2006:1 https://infoscience.epfl.ch/record/210881?ln=en
[3]
Gildenblat G, Wang H, Chen T L, et al. SP:an advanced surface-potential-based compact MOSFET model. IEEE J Solid-State Circuits, 2004, 39(9):1394 doi: 10.1109/JSSC.2004.831604
[4]
John D L, Allerstam F, Rodle T, et al. A surface-potential based model for GaN HEMTs in RF power amplifier applications. IEEE International Electron Devices Meeting (IEDM), 2010:8.3.1 http://ieeexplore.ieee.org/document/5703321/authors
[5]
Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12):2258 doi: 10.1109/22.179888
[6]
Cheng X, Li M, Wang Y. Physics-based compact model for AlGaN/GaN MODFETs with close-formed I-V and C-V characteristics. IEEE Trans Electron Devices, 2009, 56(12):2881 doi: 10.1109/TED.2009.2030722
[7]
Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12):1383 doi: 10.1109/TMTT.1985.1133229
[8]
Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2):160 doi: 10.1109/T-ED.1987.22902
[9]
Cabral P M, Pedro J C, Carvalho N B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans Microw Theory Tech, 2004, 52(11):2585 doi: 10.1109/TMTT.2004.837196
[10]
Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12):1383 doi: 10.1109/TMTT.1985.1133229
[11]
Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2):160 doi: 10.1109/T-ED.1987.22902
[12]
Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12):2258 doi: 10.1109/22.179888
[13]
Agilent Technologies, ICCAP Software Documentation. Palo Alto, CA: Agilent Technologies Inc. , 2009
[14]
Cabral P M, Pedro J C, Carvalho N B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans Microw Theory Tech, 2004, 52(11):2585 doi: 10.1109/TMTT.2004.837196
[15]
Kallfass I, Schumacher H, Brazil T J. A unified approach to charge-conservative capacitance modeling in HEMTs. IEEE Trans Microw Wireless Compon Lett, 2006, 16(12):678 doi: 10.1109/LMWC.2006.885627
[16]
Cao Y, Chen X, Wang G. Dynamic behavioral modeling of nonlinear microwave devices using real-time recurrent neural network. IEEE Trans Electron Devices, 2009, 56(5):1020 doi: 10.1109/TED.2009.2016029
[17]
Kumar S P, Agrawal A, Chaujar R, et al. Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson's equation. Microelectron J, 2007, 38(10):1013 http://sdrl-does.edsdelhi.org/downloads/52.pdf
[18]
Xi X J, He J, Dunga M, et al. BSIM5 MOSFET model. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004:920 http://ieeexplore.ieee.org/document/1436657/
[19]
Gildenblat G, Li X, Wu W, et al. PSP:an advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans Electron Devices, 2006, 53(9):1979 doi: 10.1109/TED.2005.881006
[20]
Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFETs. IEEE Trans Electron Devices, 2011, 58(2):448 doi: 10.1109/TED.2010.2089690
[21]
Khandelwal S, Chauhan Y S, Fjeldly T A. Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 2012, 59(10):2856 doi: 10.1109/TED.2012.2209654
[22]
Khandelwal S, Yadav C, Agnihotri S, et al. Robust surface-potential-based compact model for GaN HEMT IC design. IEEE Trans Electron Devices, 2013, 60(10):3216 doi: 10.1109/TED.2013.2265320
[23]
Pao H C, Sah C T. Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron, 1966, 9(10):927 doi: 10.1016/0038-1101(66)90068-2
[24]
Wu W, Li X, Wang H, et al. SP-SOI:third generation surface potential based compact SOI MOSFET model. Proc IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2005:819 http://ieeexplore.ieee.org/document/1568795/
[25]
Rios R, Mudanai S, Shih W K, et al. An efficient surface potential solution algorithm for compact MOSFET models. IEEE International Electron Devices Meeting (IEDM), 2004:755 http://ieeexplore.ieee.org/document/1419282/?arnumber=1419282&filter%3DAND(p_IS_Number:30682)
[26]
Gildenblat G, Chen T L, Gu X, et al. SP:an advanced surface-potential-based compact MOSFET model. Proc IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2003:233
[27]
Gildenblat G, Chen T L. Overview of an advanced surface-potential-based MOSFET model (SP). Tech Proc 5th Int Conf Modeling and Simulation of Microsystems, Boston, America, 2002:657 http://www.nsti.org/Nanotech2002/WCM2002/WCM2002-GGildenblat.pdf
[28]
Wang H, Chen T L, Gildenblat G. Quasi-static and nonquasistatic compact MOSFET models based on symmetric linearization of the bulk and inversion charges. IEEE Trans Electron Devices, 2003, 50:2262 doi: 10.1109/TED.2003.818596
[29]
Li X, Wu W, Gildenblat G, et al. PSP model manual. 2009. Online Available: http://www.nxp.com/wcm_documents/models/mos-models/model-psp/psp103p1_summary.pdf
[30]
Ward D E, Dutton R W. A charge-oriented model for MOS transistor capacitances. IEEE J Solid-State Circuits, 1978, 13(5):703 doi: 10.1109/JSSC.1978.1051123
[31]
Liu J, Yu Z, Sun L. An accurate surface-potential based large-signal model for HEMTs. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2012), Denver, Colorado, USA, 2012
[32]
Van Langevelde R, Paasschens J, Scholten A, et al. New compact model for induced gate current noise. IEEE International Electron Devices Meeting (IEDM) Tech Dig, Washington DC, America, 2003:867
[33]
Paasschens J C J, Scholten A J, van Langevelde R. Generalizations of the Klaassen-Prins equation for calculating the noise of semiconductor device. IEEE Trans Electron Devices, 2005, 52(11):2463 doi: 10.1109/TED.2005.857189
[34]
Darwish A M, Bayba A J, Huang H A. Thermal resistance calculation of AlGaN-GaN devices. IEEE Trans Microw Theory Tech, 2004, 52(11):2611 doi: 10.1109/TMTT.2004.837200
[35]
Wang J, Sun L, Liu J, et al. A surface-potential-based model for AlGaN/AlN/GaN HEMT. Journal of Semiconductors, 2013, 34(9):094002 doi: 10.1088/1674-4926/34/9/094002
Fig. 1.  Large-signal model topology for compound semiconductor HEMTs.

Fig. 2.  Schematic cross-section of GaAs or GaN HEMTs. $d_{\rm d}$ and $d_{\rm i}$ are the thicknesses of n-AlGaN and space layer InGaAs, respectively.

Fig. 3.  Comparison of the analytical approximation of the surface potential in the channel area with numerical solution at $T=$ 300 K. $E(\psi_{\rm s}$) is defined as $E(\psi_{\rm s}$) $=$ $A(\psi_{\rm s})-N(\psi_{\rm s}$), where $A(\psi_{\rm s})$ and $N(\psi_{\rm s})$ represent the analytical approximated and numerical computed $(\psi_{\rm s})$, respectively. The peak values of the error $E(\psi_{\rm s})$, occurred at $V_{\rm gs} + V_{\rm ds}$, closes to $V_{\rm fb}$, are at the mV level; the error is so small that it will not cause problems in the compact model derivation.

Fig. 4.  Model simulated on the extracted model parameters as given in Table Ⅱ and measured $C_{\rm gs}$ of a 4-finger GaAs HEMT operated at $V_{\rm ds}$ $=$ 0 V. The problem caused by the directly use of SLT can be solved by replacing $V^*_{\rm gs}$ with $V_{\rm gse}$.

Fig. 5.  Model parameter extraction flow. $S$-parameters were measured and de-embedded (open $+$ short) for parasitics introduced by GSG PAD using an Agilent E8364A network analyzer and a CASCADE Summit probe station for model parameter extraction. The DC characteristics of the device were measured using an Agilent 4156C Semiconductor Parameter Analyzer. The model parameters for $I_{\rm gs}$ and $I_{\rm gd}$ are determined from the forward bias $I$-$V$ measurements. The determination of the junction temperature scalable model parameters are intergraded with the extraction of $I_{\rm ds}$ and charge model parameters, while the thermal resistance $R_{\rm th}$ is evaluated by using the method presented in Ref. [34]. As the critical frequency of the transconductance dispersion effect of the device is about several MHz and our small-signal measurement starts from 2 GHz, accurate extraction of $C_{\rm th}$, $C_{\rm dp}$ and $R_{\rm dp}$ is hard and of no importance for model verification in this work. Therefore, $C_{\rm th}$ is set to 1 $\mu$F for thermal effect simulation. $C_{\rm dp}$ and $R_{\rm dp}$ are simply determined by optimizing the $g_{\rm m}$ and $g_{\rm ds}$ calculated from the hot $S$-parameters.

Fig. 6.  Measured and simulated $I_{\rm ds}$ versus $V_{\rm ds}$ at $T_{\rm nom}$ $=$ 25 ℃ for $V_{\rm gs}$ $=$ $-2$ to 0.5 V, 0.25 V steps and $V_{\rm ds}$ $=$ 0 to 4.5 V, 0.1 V steps.

Fig. 7.  Measured and simulated Gummel symmetry characteristics at $T_{\rm nom}$ $=$ 25 ℃ for $V_{\rm gs}$ $=$ $-1$ to 0.5 V, 0. 5 V steps and $V_{x}$ $=$ $-1$ to 1 V, 0.1 V steps, $V_{\rm d}$ $=$ $V_{x}$ and $V_{\rm s}$ $=$ $-V_{x}$.

Fig. 8.  $C_{\rm gd}$ and $C_{\rm gd}$ extracted from measured and simulated $S$-parameters at Freq $=$ 2 GHz, $T_{\rm nom}$ $=$ 25 ℃ for $V_{\rm gs}$ $=$ $-2$ to 0 V, 0.25 V steps and $V_{\rm ds}$ $=$ 1 to 4 V, 1 V steps.

Fig. 9.  Measured and modeled transconductance gm at $T_{\rm nom}$ $=$ 25 ℃ for $V_{\rm gs}$ $=$ $-2$ to 0.5 V, 0.1 V steps and $V_{\rm ds}$ $=$ 1.0 to 4.5 V, 1.5 V steps.

Fig. 10.  Transconductance $g_{\rm m}$ extracted from the measured and modeled $S$-parameters at $f$ $=$ 2 GHz, $T_{\rm nom}$ $=$ 25 ℃ for $V_{\rm gs}$ $=$ $-2$ to 0 V, 0.25 V steps and $V_{\rm ds}$ $=$ 1 to 4 V, 1 V steps.

Fig. 11.  Measured and modeled $S$-parameters at for 2 to 66 GHz, 2 GHz steps at (a) $V_{\rm ds}$ $=$ 4 V, $V_{\rm gs}$ $=$ $-0.5$ V and (b) $V_{\rm ds}$ $=$ 4 V, $V_{\rm gs}$ $=$ $-0.75$ V.

Fig. 12.  Model simulated and measured fundamental output power ($P_{\rm out}$), gain and power added efficiency (PAE) at (a) $V_{\rm ds}$ $=$ 4 V, $V_{\rm gs}$ $=$ $-0.75$ V and (b) $V_{\rm ds}$ $=$ 4 V, $V_{\rm gs}$ $=$ $-0.5$ V for input power $P_{\rm in}$ $=$ $-5.9$ to 19.8 dBm, $Z_{\rm l}$ $=$ 20.3 $+$ j*7.8 $\Omega$, $Z_{\rm s}$ $=$ 9.41 $+$ j*3.12 $\Omega$.

Fig. 13.  Measured and modeled NFmin for 2 to 26 GHz, 2 GHz steps.

Table 1.   Device parameters used to verify the derived analytical solutions to SPE (1). The calculated flat band voltage ($V_{\rm fb}$) of this device is $-0.904$ V. All parameters are set as compact model parameters for device modeling in this work.

Table 2.   Extracted model parameter values from a 4-finger GaAs HEMT.

[1]
Pala V, Peng H, Wright P, et al. Integrated high frequency power converters based on GaAs pHEMT:technology characterization and design examples. IEEE Trans Power Electron, 2011, 27(99):1 http://ieeexplore.ieee.org/document/6069868/
[2]
Medjdoub F, Carlin J F, Gonschorek M, et al. Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices. IEEE International Electron Devices Meeting (IEDM), 2006:1 https://infoscience.epfl.ch/record/210881?ln=en
[3]
Gildenblat G, Wang H, Chen T L, et al. SP:an advanced surface-potential-based compact MOSFET model. IEEE J Solid-State Circuits, 2004, 39(9):1394 doi: 10.1109/JSSC.2004.831604
[4]
John D L, Allerstam F, Rodle T, et al. A surface-potential based model for GaN HEMTs in RF power amplifier applications. IEEE International Electron Devices Meeting (IEDM), 2010:8.3.1 http://ieeexplore.ieee.org/document/5703321/authors
[5]
Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12):2258 doi: 10.1109/22.179888
[6]
Cheng X, Li M, Wang Y. Physics-based compact model for AlGaN/GaN MODFETs with close-formed I-V and C-V characteristics. IEEE Trans Electron Devices, 2009, 56(12):2881 doi: 10.1109/TED.2009.2030722
[7]
Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12):1383 doi: 10.1109/TMTT.1985.1133229
[8]
Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2):160 doi: 10.1109/T-ED.1987.22902
[9]
Cabral P M, Pedro J C, Carvalho N B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans Microw Theory Tech, 2004, 52(11):2585 doi: 10.1109/TMTT.2004.837196
[10]
Curtice W R, Ettenberg M. A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers. IEEE Trans Microw Theory Tech, 1985, 33(12):1383 doi: 10.1109/TMTT.1985.1133229
[11]
Statz H, Newman P, Smith I W, et al. GaAs FET device and circuit simulation in SPICE. IEEE Trans Electron Devices, 1987, 34(2):160 doi: 10.1109/T-ED.1987.22902
[12]
Angelov I, Zirath H, Rosman N. A new empirical nonlinear model for HEMT and MESFET devices. IEEE Trans Microw Theory Tech, 1992, 40(12):2258 doi: 10.1109/22.179888
[13]
Agilent Technologies, ICCAP Software Documentation. Palo Alto, CA: Agilent Technologies Inc. , 2009
[14]
Cabral P M, Pedro J C, Carvalho N B. Nonlinear device model of microwave power GaN HEMTs for high power-amplifier design. IEEE Trans Microw Theory Tech, 2004, 52(11):2585 doi: 10.1109/TMTT.2004.837196
[15]
Kallfass I, Schumacher H, Brazil T J. A unified approach to charge-conservative capacitance modeling in HEMTs. IEEE Trans Microw Wireless Compon Lett, 2006, 16(12):678 doi: 10.1109/LMWC.2006.885627
[16]
Cao Y, Chen X, Wang G. Dynamic behavioral modeling of nonlinear microwave devices using real-time recurrent neural network. IEEE Trans Electron Devices, 2009, 56(5):1020 doi: 10.1109/TED.2009.2016029
[17]
Kumar S P, Agrawal A, Chaujar R, et al. Threshold voltage model for small geometry AlGaN/GaN HEMTs based on analytical solution of 3-D Poisson's equation. Microelectron J, 2007, 38(10):1013 http://sdrl-does.edsdelhi.org/downloads/52.pdf
[18]
Xi X J, He J, Dunga M, et al. BSIM5 MOSFET model. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004:920 http://ieeexplore.ieee.org/document/1436657/
[19]
Gildenblat G, Li X, Wu W, et al. PSP:an advanced surface-potential-based MOSFET model for circuit simulation. IEEE Trans Electron Devices, 2006, 53(9):1979 doi: 10.1109/TED.2005.881006
[20]
Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFETs. IEEE Trans Electron Devices, 2011, 58(2):448 doi: 10.1109/TED.2010.2089690
[21]
Khandelwal S, Chauhan Y S, Fjeldly T A. Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices. IEEE Trans Electron Devices, 2012, 59(10):2856 doi: 10.1109/TED.2012.2209654
[22]
Khandelwal S, Yadav C, Agnihotri S, et al. Robust surface-potential-based compact model for GaN HEMT IC design. IEEE Trans Electron Devices, 2013, 60(10):3216 doi: 10.1109/TED.2013.2265320
[23]
Pao H C, Sah C T. Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid-State Electron, 1966, 9(10):927 doi: 10.1016/0038-1101(66)90068-2
[24]
Wu W, Li X, Wang H, et al. SP-SOI:third generation surface potential based compact SOI MOSFET model. Proc IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2005:819 http://ieeexplore.ieee.org/document/1568795/
[25]
Rios R, Mudanai S, Shih W K, et al. An efficient surface potential solution algorithm for compact MOSFET models. IEEE International Electron Devices Meeting (IEDM), 2004:755 http://ieeexplore.ieee.org/document/1419282/?arnumber=1419282&filter%3DAND(p_IS_Number:30682)
[26]
Gildenblat G, Chen T L, Gu X, et al. SP:an advanced surface-potential-based compact MOSFET model. Proc IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, 2003:233
[27]
Gildenblat G, Chen T L. Overview of an advanced surface-potential-based MOSFET model (SP). Tech Proc 5th Int Conf Modeling and Simulation of Microsystems, Boston, America, 2002:657 http://www.nsti.org/Nanotech2002/WCM2002/WCM2002-GGildenblat.pdf
[28]
Wang H, Chen T L, Gildenblat G. Quasi-static and nonquasistatic compact MOSFET models based on symmetric linearization of the bulk and inversion charges. IEEE Trans Electron Devices, 2003, 50:2262 doi: 10.1109/TED.2003.818596
[29]
Li X, Wu W, Gildenblat G, et al. PSP model manual. 2009. Online Available: http://www.nxp.com/wcm_documents/models/mos-models/model-psp/psp103p1_summary.pdf
[30]
Ward D E, Dutton R W. A charge-oriented model for MOS transistor capacitances. IEEE J Solid-State Circuits, 1978, 13(5):703 doi: 10.1109/JSSC.1978.1051123
[31]
Liu J, Yu Z, Sun L. An accurate surface-potential based large-signal model for HEMTs. International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2012), Denver, Colorado, USA, 2012
[32]
Van Langevelde R, Paasschens J, Scholten A, et al. New compact model for induced gate current noise. IEEE International Electron Devices Meeting (IEDM) Tech Dig, Washington DC, America, 2003:867
[33]
Paasschens J C J, Scholten A J, van Langevelde R. Generalizations of the Klaassen-Prins equation for calculating the noise of semiconductor device. IEEE Trans Electron Devices, 2005, 52(11):2463 doi: 10.1109/TED.2005.857189
[34]
Darwish A M, Bayba A J, Huang H A. Thermal resistance calculation of AlGaN-GaN devices. IEEE Trans Microw Theory Tech, 2004, 52(11):2611 doi: 10.1109/TMTT.2004.837200
[35]
Wang J, Sun L, Liu J, et al. A surface-potential-based model for AlGaN/AlN/GaN HEMT. Journal of Semiconductors, 2013, 34(9):094002 doi: 10.1088/1674-4926/34/9/094002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2668 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 05 August 2013 Revised: 22 September 2013 Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jun Liu, Zhiping Yu, Lingling Sun. A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs[J]. Journal of Semiconductors, 2014, 35(3): 034010. doi: 10.1088/1674-4926/35/3/034010 J Liu, Z P Yu, L L Sun. A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs[J]. J. Semicond., 2014, 35(3): 034010. doi: 10.1088/1674-4926/35/3/034010.Export: BibTex EndNote
      Citation:
      Jun Liu, Zhiping Yu, Lingling Sun. A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs[J]. Journal of Semiconductors, 2014, 35(3): 034010. doi: 10.1088/1674-4926/35/3/034010

      J Liu, Z P Yu, L L Sun. A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs[J]. J. Semicond., 2014, 35(3): 034010. doi: 10.1088/1674-4926/35/3/034010.
      Export: BibTex EndNote

      A complete and accurate surface-potential based large-signal model for compound semiconductor HEMTs

      doi: 10.1088/1674-4926/35/3/034010
      More Information
      • Corresponding author: Liu Jun, Email:ljun77@163.com
      • Received Date: 2013-08-05
      • Revised Date: 2013-09-22
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return