INVITED REVIEW PAPERS

Field-effect transistor memories based on ferroelectric polymers

Yujia Zhang, Haiyang Wang, Lei Zhang, Xiaomeng Chen, Yu Guo, Huabin Sun and Yun Li

+ Author Affiliations

 Corresponding author: Yun Li, Email: yli@nju.edu.cn

PDF

Abstract: Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications.

Key words: ferroelectric polymersfield-effect transistor memoriesferroelectricity



[1]
Chavan A A, Ramaswamy D V N, Tao Q. Methods of forming ferroelectric capacitors. Evgeny Tsymbal Publications, 2006: 22
[2]
Chen Y Q, Liu Y L, Wang B. Minimum size of 180 degree domains in ferroelectric thin films covered by electrodes. Appl Math Mech, 2006, 27(8): 1031 doi: 10.1007/s10483-006-0803-1
[3]
Valasek L. Piezo-electric and allied phenomena in Rochelle salt. Phys Rev, 1921, 17: 475 doi: 10.1103/PhysRev.17.475
[4]
Furukawa T, Nakajima T, Takahashi Y. Factor governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films. IEEE Trans Dielectr Electr Insul, 2006, 13(5): 1120 doi: 10.1109/TDEI.2006.247840
[5]
Furukawa T. Recent advances in ferroelectric polymers. Ferroelectrics, 1990, 104(1): 229 doi: 10.1080/00150199008223826
[6]
Kepler R G, Anderson R A. Ferroelectric polymers. Adv Phys, 1992, 41(1): 1 doi: 10.1080/00018739200101463
[7]
Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci, 2014, 39(4): 683 doi: 10.1016/j.progpolymsci.2013.07.006
[8]
Kang S J, Park Y J, Sung J, et al. Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. Appl Phys Lett, 2008, 92(1): 012921 doi: 10.1063/1.2830701
[9]
Li C, Wu P M, Lee S, et al. Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J Microelectromech Syst, 2008, 17(2): 334 doi: 10.1109/JMEMS.2007.911375
[10]
Cavallini M. Status and perspectives in thin films and patterning of spin crossover compounds. Phys Chem Chem Phys, 2012, 14(34): 11867 doi: 10.1039/c2cp40879a
[11]
Dietze M, Es-Souni M. Structural and functional properties of screen-printed PZT–PVDF-TrFE composites. Sens Actuators A, 2008, 143(2): 329 doi: 10.1016/j.sna.2007.11.016
[12]
Ducharme S, Bune A V, Blinov L M, et al. Critical point in ferroelectric Langmuir-Blodgett polymer films. Phys Rev B, 1998, 57(1): 25 doi: 10.1103/PhysRevB.57.25
[13]
Persano L, Dagdeviren C, Su Y, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun, 2013, 4(3): 67 doi: 10.1038/ncomms2639
[14]
Delongchamp D M, Vogel B M, Jung Y, et al. Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem Mater, 2005, 17(23): 5610 doi: 10.1021/cm0513637
[15]
Nguyen H T, Nguyen L T T, Nguyen T T, et al. Synthesis of hyperbranched conjugated polymers based on 3-hexylthiophene, triphenylamine and benzo [c] [1,2,5] thiadiazole moieties: convenient synthesis through suzuki polymerization and impact of structures on optical properties. J Polym Res, 2014, 21(9): 1
[16]
Park M S, Joo W, Kim J K. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition. Langmuir, 2006, 22(10): 4594 doi: 10.1021/la053009t
[17]
Lau K, Liu Y, Chen H, et al. Effect of annealing temperature on the morphology and piezoresponse characterisation of poly(vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy. Adv Condens Matter Phys, 2013, 2013(1): 1 doi: 10.1155/2013/435938
[18]
Schick M J. Aggregation processes in solution. J Polym Sci C, 1984, 22(1): 50.
[19]
Kotsuki K, Tanaka H, Obata S, et al. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: film morphology and field effect mobility. Appl Phys Lett, 2014, 104(23): 233306 doi: 10.1063/1.4883216
[20]
Feng T T, Xie D, Zang Y Y, et al. Temperature control of P(VDF-TrFE) copolymer thin films. Integr Ferroelectr, 2013, 141(1): 187 doi: 10.1080/10584587.2012.694748
[21]
Mao D, Quevedo-Lopez M A, Stiegler H, et al. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics. Org Electron, 2010, 11(5): 925 doi: 10.1016/j.orgel.2010.02.012
[22]
Ducharme S, Reece T J, Othon C M, et al. Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications. IEEE Trans Device Mater Reliab, 2006, 5(4): 720 doi: 10.1109/TDMR.2005.860818
[23]
Gerber A, Fitsilis M, Waser R, et al. Ferroelectric field effect transistors using very thin ferroelectric polyvinylidene fluoride copolymer films as gate dielectrics. J Appl Phys, 2010, 107(12): 124119 doi: 10.1063/1.3437638
[24]
Brondijk J J, Asadi K, Blom P W M, et al. Physics of organic ferroelectric field-effect transistors. J Polym Sci B, 2011, 50(1): 47 doi: 10.1002/polb.22363
[25]
Naber R C G, Tanase C, Blom P W M, et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater, 2005, 4(3): 243 doi: 10.1038/nmat1329
[26]
Naber R C G, Massolt J, Spijkman M, et al. Origin of the drain current bistability in polymer ferroelectric field-effect transistors. Appl Phys Lett, 2007, 90(11): 142 doi: 10.1063/1.1533844
[27]
Reece T J, Gerber A, Kohlstedt H, et al. Investigation of state retention in metal–ferroelectric–insulator–semiconductor structures based on Langmuir–Blodgett copolymer films. J Appl Phys, 2010, 108(2): 044103
[28]
Zheng Y, Ni G X, Toh C T, et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl Phys Lett, 2009, 94(16): 666 doi: 10.1063/1.2749841
[29]
Naber R C G, Asadi K, Blom P W M, et al. Organic Nonvolatile Memory Devices Based on Ferroelectricity[J]. Advanced Materials, 2010, 22(9):933-45. doi: 10.1002/adma.200900759
[30]
Naber R C G, De Boer B, Blom P W M, et al. Low-voltage polymer field-effect transistors for nonvolatile memories. Appl Phys Lett, 2005, 87(20): 166
[31]
Sirringhaus H, Brown P J, Friend R H, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401(6754): 685 doi: 10.1038/44359
[32]
Steudel S, De Vusser S, De Jonge S, et al. Influence of the dielectric roughness on the performance of pentacene transistors. Appl Phys Lett, 2004, 85(19): 4400 doi: 10.1063/1.1815042
[33]
Naber R C G, Mulder M, Boer B D, et al. High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric. Org Electron, 2006, 7(3): 132 doi: 10.1016/j.orgel.2005.11.007
[34]
Laudari A, Guha S. Bandlike transport in ferroelectric-based organic field-effect transistors. Phys Rev Appl, 2016, 6(4): 044007 doi: 10.1103/PhysRevApplied.6.044007
[35]
Narayanan Unni K N, De Bettignies R, Dabos-Seignon S, et al. A nonvolatile memory element based on an organic field-effect transistor. Appl Phys Lett, 2004, 85(10): 1823 doi: 10.1063/1.1788887
[36]
Nguyen C A, Lee P S, Mhaisalkar S G. Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric. Org Electron, 2007, 8(4): 415 doi: 10.1016/j.orgel.2007.01.010
[37]
Sun Y L, Xie D, Xu J L, et al. Pentacene organic ferroelectric transistors with [P(VDF-TrFE)] gate by Langmuir- Blodgett process. J Appl Phys, 2015, 118: 115501 doi: 10.1063/1.4930867
[38]
Gundlach D J, Jackson T N, Schlom D G, et al. Solvent-induced phase transition in thermally evaporated pentacene films. Appl Phys Lett, 1999, 74(22): 3302 doi: 10.1063/1.123325
[39]
Nguyen C A, Mhaisalkar S G, Ma J, et al. Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric. Org Electron, 2008, 9(6): 1087 doi: 10.1016/j.orgel.2008.08.012
[40]
Kusuma D Y, Nguyen C A, Lee P S. Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J Phys Chem B, 2010, 114(42): 13289 doi: 10.1021/jp105249f
[41]
Matsuo Y, Ijichi T, Yamada H, et al. Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene. Centr Europ J Phys, 2004, 2(2): 357
[42]
Matsuo Y, Ijichi T, Hatori J, et al. Fabrication and electrical properties of field effect transistor based on ferroelectric insulator and pentacene film. Curr Appl Phys, 2004, 4(2): 210
[43]
Schroeder R, Majewski L, Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv Mater, 2004, 16(7): 633 doi: 10.1002/(ISSN)1521-4095
[44]
Schroeder R, Majewski L A, Voigt M, et al. Memory performance and retention of an all-organic ferroelectric-like memory transistor. IEEE Electron Device Lett, 2005, 26(2): 69 doi: 10.1109/LED.2004.841186
[45]
Noda K, Ishida K, Kubono A, et al. Remanent polarization of evaporated films of vinylidene fluoride oligomers. J Appl Phys, 2003, 93(5): 2866 doi: 10.1063/1.1540231
[46]
Matsumoto A, Horie S, Yamada H, et al. Ferro-and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film. Appl Phys Lett, 2007, 90(20): 202906 doi: 10.1063/1.2740117
[47]
Sun H, Wang Q, Li Y, et al. Boost up carrier mobility for ferroelectric organic transistor memory via buffering interfacial polarization fluctuation. Sci Rep, 2014, 4: 7227 doi: 10.1038/srep07227
[48]
Liu C, Xu Y, Noh Y Y. Contact engineering in organic field-effect transistors. Mater Today, 2015, 18(2): 79 doi: 10.1016/j.mattod.2014.08.037
[49]
Muccini M. A bright future for organic field-effect transistors. Nat Mater, 2006, 5(8):605 doi: 10.1038/nmat1699
[50]
Klauk H, Schmid G, Radlik W, et al. Contact resistance in organic thin film transistors. Solid-State Electron, 2003, 47(2): 297 doi: 10.1016/S0038-1101(02)00210-1
[51]
Minari T, Miyadera T, Tsukagoshi K, et al. Scaling effect on the operation stability of short-channel organic single-crystal transistors. Appl Phys Lett, 2007, 91(6): 063506 doi: 10.1063/1.2767987
[52]
Herlogsson L, Crispin X, Tierney S, et al. Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv Mater, 2011, 23(40): 4684 doi: 10.1002/adma.201101757
[53]
Sun H, Yin Y, Wang Q, et al. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface. Appl Phys Lett, 2015, 117(23): 12337
[54]
Cheng C H, Yeh F S, Chin A. Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance. Adv Mater, 2011, 23(7): 902 doi: 10.1002/adma.v23.7
[55]
Baeg K J, Khim D, Kim J, et al. Organic electronics: high-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash Memory. Adv Funct Mater, 2012, 22(14): 2881 doi: 10.1002/adfm.v22.14
[56]
Yoon S M, Yang S, Byun C W, et al. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel. Semicond Sci Technol, 2011, 26(3): 034007 doi: 10.1088/0268-1242/26/3/034007
[57]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[58]
Yoon S, Yang S, Byun C, et al. Fully Transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C. Adv Funct Mater, 2010, 20(6): 921 doi: 10.1002/adfm.200902095
[59]
Yoon S M, Yang S, Byun C W, et al. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel. Semicond Sci Technol, 2011, 26(3): 034007 doi: 10.1088/0268-1242/26/3/034007
[60]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[61]
Noh S H, Choi W, Min S O, et al. ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators. Appl Phys Lett, 2007, 90(25): 253504. doi: 10.1063/1.2749841
[62]
Lee G G, Fujisaki Y, Ishiwara H, et al. Low-voltage operation of ferroelectric gate thin film transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Express, 2011, 4(9): 544
[63]
Yoon S M, Yang S, Ryu M K, et al. Oxide semiconductor-based organic/inorganic hybrid dual-gate nonvolatile memory thin-film transistor. IEEE Trans Electron Devices, 2011, 58(7): 2135 doi: 10.1109/TED.2011.2139212
[64]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 243
[65]
Breemen A V, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966 doi: 10.1016/j.orgel.2013.04.025
[66]
Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892 doi: 10.1149/1.3609842
[67]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 243
[68]
Park C H, Lee G, Lee K H, et al. Enhancing the retention properties of ZnO memory transistor by modifying the channel/ferroelectric polymer interface. Appl Phys Lett, 2009, 95(15): 386
[69]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[70]
Yoon S M, Yang S H, Park S H K, et al. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer. J Phys D, 2009, 42(24): 245101 doi: 10.1088/0022-3727/42/24/245101
[71]
Park C H, Lee K H, Lee B H, et al. Channel/ferroelectric interface modification in ZnO non-volatile memory TFT with P (VDF-TrFE) polymer. J Mater Chem, 2010, 20(13): 2638 doi: 10.1039/B921732K
[72]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[73]
Petti L, Munzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[74]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 43(34): 2945
[75]
Tomai S, Nishimura M, Itose M, et al. High-performance thin film transistor with amorphous In2O3-SnO2-ZnO channel layer. Jpn J Appl Phys, 2013, 51(3S): 03CB01
[76]
Maruyama T, Tago T. Germanium- and silicon-doped indium-oxide thin films prepared by radio-frequency magnetron sputtering. Appl Phys Lett, 1994, 64(11):1395 doi: 10.1063/1.111894
[77]
Kumomi H, Yaginuma S, Omura H, et al. Materials, devices, and circuits of transparent amorphous-oxide semiconductor. J Display Technol, 2009, 5(12): 531 doi: 10.1109/JDT.2009.2025521
[78]
Aikawa S, Darmawan P, Yanagisawa K, et al. Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor. Appl Phys Lett, 2013, 102(10): 102101 doi: 10.1063/1.4794903
[79]
Kizu T, Aikawa S, Mitoma N, et al. Low-temperature processable amorphous In–W–O thin-film transistors with high mobility and stability. Appl Phys Lett, 2014, 104(15): 3787
[80]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[81]
Wang Y, Kizu T, Song L, et al. High-performance non-volatile field-effect transistor memories using an amorphous oxide semiconductor and ferroelectric polymer. J Mater Chem C, 2016, 4(34): 7917 doi: 10.1039/C6TC01768A
[82]
Li Y, Liu C, Pan L, et al. Electrical switching behavior from all-polymer-based system of semiconductor/ferroelectrics/semiconductor. Appl Phys Lett, 2011, 98(17): 83
[83]
Kusuma D Y, Lee P S. Ferroelectric tunnel junction memory devices made from monolayers of vinylidene fluoride oligomers. Adv Mater, 2012, 24(30): 4163 doi: 10.1002/adma.201104476
[84]
Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108(52): 19912 doi: 10.1021/jp040650f
[85]
Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191 doi: 10.1126/science.1125925
[86]
Lemme M C, Echtermeyer T J, Baus M, et al. A graphene field-effect device. IEEE Electron Device Lett, 2007, 28(4): 282 doi: 10.1109/LED.2007.891668
[87]
Wang X, Ouyang Y, Li X, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100: 206803 doi: 10.1103/PhysRevLett.100.206803
[88]
Han M Y, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98: 206805 doi: 10.1103/PhysRevLett.98.206805
[89]
Lin Y M, Avouris P. Strong suppression of electrical noise in bilayer graphene nanodevices.. Nano Lett, 2008, 8(8): 2119 doi: 10.1021/nl080241l
[90]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3): 147 doi: 10.1038/nnano.2010.279
[91]
Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. Acs Nano, 2011, 5(12): 9934 doi: 10.1021/nn203715c
[92]
Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl Phys Lett, 2013, 103(10): 1497
[93]
Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett, 2012, 12(7): 3788 doi: 10.1021/nl301702r
[94]
Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12: 3695 doi: 10.1021/nl301485q
[95]
Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9): 815 doi: 10.1038/nmat3687
[96]
Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3(8): 1011
[97]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5): 372 doi: 10.1038/nnano.2014.35
[98]
Han Liu, Adam T. Neal, Zhen Zhu, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8: 4033 doi: 10.1021/nn501226z
[99]
Zhang S, Yang J, Xu R, et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. Acs Nano, 2014, 8(9): 9590 doi: 10.1021/nn503893j
[100]
Das S, Zhang W, Demarteau M, et al. Tunable transport gap in phosphorene. Nano Lett, 2014, 14(10): 5733 doi: 10.1021/nl5025535
[101]
Du Y, Liu H, Deng Y, et al. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. Acs Nano, 2014, 8(10): 10035 doi: 10.1021/nn502553m
[102]
Das S, Demarteau M, Roelofs A K. Ambipolar phosphorene field effect transistor. Acs Nano, 2014, 8(11): 11730 doi: 10.1021/nn505868h
[103]
Lee Y T, Kwon H, Kim J S, et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. Acs Nano, 2015, 9(10): 10394 doi: 10.1021/acsnano.5b04592
[104]
Naber R C G, Asadi K, Blom P W M, et al. Organic nonvolatile memory devices based on ferroelectricity. Adv Mater, 2010, 22(9): 933 doi: 10.1002/adma.200900759
[105]
Park Y J, Bae I S, Kang S J, et al. Control of thin ferroelectric polymer films for non-volatile memory applications. IEEE Trans Dielectr Electr Insul, 2010, 17(4): 1135 doi: 10.1109/TDEI.2010.5539685
[106]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[107]
Naber R C G, De Boer B, Blom P W M, et al. Low-voltage polymer field-effect transistors for nonvolatile memories. Appl Phys Lett, 2005, 87(20): 166
[108]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 243
[109]
Yoon S, Yang S, Byun C, et al. Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C. Adv Funct Mater, 2010, 20(6): 921 doi: 10.1002/adfm.200902095
[110]
Yoon S M, Yang S, Byun C W, et al. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel. Semicond Sci Technol, 2011, 26(3): 034007 doi: 10.1088/0268-1242/26/3/034007
[111]
Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice. Mater Sci Eng B, 2007, 139(1): 1 doi: 10.1016/j.mseb.2007.01.044
[112]
Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci, 2005, 79: 47 doi: 10.1016/j.progsurf.2005.09.002
[113]
Ogo Y, Hiramatsu H, Nomura K, et al. p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl Phys Lett, 2008, 93(3): 488
[114]
Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 488
[115]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. Acs Nano, 2013, 7(6): 5160 doi: 10.1021/nn400852r
[116]
Ogo Y, Hiramatsu H, Nomura K, et al. Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application. Phys Status Solidi, 2009, 206(9): 2187 doi: 10.1002/pssa.v206:9
[117]
Caraveofrescas J A, Khan M A, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4(23): 5243 doi: 10.1002/pssa.v206:9
[118]
Haibin Su, Alejandro Strachan, and William A. Goddard. Density functional theory and molecular dynamics studies on energetics and kinetics for electro-active polymers: PVDF and P(VDF–TrFE)[C]. 2005 APS March Meeting, American Physical Society, 2005
[119]
Sun H. Organic ferroelectric field-effect memory devices. Nanjing: Nanjing University Press, 2015
Fig. 1.  (Color online) (a) Hysteresis loop of PVDF, adapted from Ref. [6]. (b) 180° model for polarization reversal, adapted from Ref. [5]. (c) 60° model for polarization reversal adapted from Ref. [5]. (d) TT configurations of VDF molecules, adapted from Ref. [118]. (e) TG+TG- configurations of VDF molecules[118]. (f) T3G+T3G- configurations of VDF molecules, adapted from Ref. [118].

Fig. 2.  (a) AFM image of P(VDF–TrFE) film using CYC as solvent (3 wt.%.), adapted from Ref. [119]. (b) AFM image of P(VDF–TrFE) film using 2-butanone as solvent (3 wt.%.), adapted from Ref. [119]. (c) AFM image of P(VDF–TrFE) film using 2-butanone as solvent (3 wt.%.) under the higher resolution, adapted from Ref. [119].

Fig. 3.  (a) AFM image of P(VDF–TrFE) film using 2-butanone as solvent (3 wt.%.) under high humidity, adapted from Ref. [119]. (b) Higher resolution AFM image of P(VDF–TrFE) film using CYC as solvent (3 wt.%.) under high humidity, adapted from Ref. [119].

Fig. 4.  (a) Higher resolution AFM image of P(VDF–TrFE) film using 2-butanone as solvent (3 wt.%.) after 120 °C annealing, adapted from Ref. [119]. (b) Higher resolution AFM image of P(VDF–TrFE) film using 2-butanone as solvent (3 wt.%.) after 135 °C annealing, adapted from Ref. [119]. (c) Higher resolution AFM image of P(VDF–TrFE) film using 2-butanone as solvent (3 wt.%.) after 140 °C annealing, adapted from Ref. [119].

Fig. 5.  (Color online) (a) A ferroelectric field-effect transistor consisting of Au source–drain electrodes and rr-P3HT as semiconductor, adapted from Ref. [24]. (b) A transfer curve of a unipolar p-type Fe-FET with a ferroelectric layer thickness of 1.7 μm. adapted from Ref. [25]. (c) The capacitance-voltage characteristics of diodes have MIS diodes consisting a P(VDF–TrFE) gate dielectric. The amplitude and ac signal frequency were 300 mV and 1 kHz, adapted from Ref. [26].

Fig. 6.  Transfer measurement of the Fe-FET with a gate dielectric whose thickness is 0.85 mm. The inset illustrated the device structure with MEH-PPV as semiconductor. Adapted from Ref. [29].

Fig. 7.  (Color online) Schematic illustration of the Fe-OFET with the bottom-gate top-contact structure. The ultrathin PMMA film works as a buffering layer between organic semiconductor layers and ferroelectric insulator of P(VDF–TrFE), buffering the polarization fluctuation from the semiconductor-insulator interface, adapted from Ref. [47]. (b) Typical transfer curves of different devices with (blue line) and without (red line) PMMA buffering layer, adapted from Ref. [47]. (c) Distributions of the field-effect mobility of devices with and without PMMA buffering, adapted from Ref. [47]. (d) Dependence of capacitance divided by channel conductance on gate voltage frequency, adapted from Ref. [47]. (e) and (f) illustrate the pulse responses of the Fe-OFETs with and without PMMA buffering, adapted from Ref. [47]. (g) AFM images of surfaces of P(VDF–TrFE), adapted from Ref. [47]. (h) AFM images of surfaces of P(VDF–TrFE)/PMMA, adapted from Ref. [47]. (i) AFM images of surfaces of C8-BTBT film on P(VDF–TrFE), adapted from Ref. [47]. (j) AFM images of surfaces of C8-BTBT film on P(VDF–TrFE)/PMMA, adapted from Ref. [47]. (k) X-ray diffraction (XRD) signal of C8-BTBT films on P(VDF–TrFE) and P(VDF–TrFE)/PMMA, adapted from Ref. [47]. (l) Illustrative presentation of the polarization fluctuation within the semiconductor/insulator interface, influencing the charge carrier transport, adapted from Ref. [47]. (m) Such a polarization fluctuation can be suppressed by depositing the ultrathin PMMA film between the semiconductor and ferroelectric layers, and the charge carrier transport is improved, adapted from Ref. [47].

Fig. 8.  (Color online) Cross-section schematic of Fe-OFETs. The length of the channel varies from 50 to 250 μm, adapted from Ref. [53]. (b) AFM morphology images of the annealed P(VDF–TrFE) films without and with PMMA buffering layer, adapted from Ref. [53]. (c) Transfer curves of Fe-OFETs with (blue line) and without (red line) PMMA buffering layer, poling by the gate pulse (−30 V for 1 s). The inset indicates the typical transfer curve of the Fe-OFETs with (blue line) and without (red line) PMMA buffering layer at the drain voltage of −2 V, adapted from Ref. [53]. The modified transmission-line method presents at different (VgVth) for different channel Fe-OFETs (d) without and (e) with PMMA, adapted from Ref. [53]. (f) Extracted contact resistance values of devices with (blue triangles) and without (red circles) PMMA, adapted from Ref. [53].

Fig. 9.  (Color online) Flexible Fe-TFT based on a-IGZO. (a) Normalized maximum drain current at VGS of 5 V and VDS of 0.1 V, adapted from Ref. [73]. (b) Threshold voltage shift (black line for the forward branch and red line for the reverse branch). Extracted from the same Fe-TFT for all values. There is a 5 min interval between two consecutive measurement points, adapted from Ref. [73].

Fig. 10.  (Color online) (a) Schematic view of a top-gate top-contact Fe-FET, adapted from Ref. [81]. (b) Specific transfer characteristic of the Fe-FET with InSiO film thermally annealed at 25 °C after being sputtered, adapted from Ref. [ 81]. (c) Capacitance/channel conductance on the frequency of VG, adapted from Ref. [81]. (d) Pulse response of the Fe-FET memory from off to on state, adapted from Ref. [81]. (e) Pulse response of the Fe-FET memory from on to off state. (f) Measurements of retention characteristic of on and off currents, adapted from Ref. [81].

Fig. 11.  (Color online) (a) OM image of FeCMOS with dual-gate on the same p+-Si substrate using p-type BFM 03 (W/L = 0.55) and n-type MFM 01 (W/L = 1.06), adapted from Ref. [103]. (b) Inset surface topographic images (top for BFM 03 and bottom for MFM 02) and AFM step height values, adapted from [103]. (c) 3D schematic view of Fe-CMOS with dual-gate using BP and MoS2 channel, adapted from Ref. [103]. (d) ID versus VG memory hysteresis curves measured at a fixed VBG of 0–20 V by steps of 5 V, adapted from Ref. [103].

Fig. 12.  (Color online) (a) Flexible substrate, adapted from Ref. [117]. (b) Rigid substrate; from bottom to top: substrate, 200 nm thick Si3N4, 30 nm thick SnO, 10 nm thick Ti/40 nm thick Au, 300 nm thick P(VDF–TrFE) and 80 nm thick Al. Retention characteristics, adapted from Ref. [117]. (c) Rigid device, adapted from Ref. [117]. (d) Flexible device. VG of −30/+30 V and a 1 s pulse produce the ON/OFF states. Retention characteristics measured at gate bias of zero, adapted from Ref. [117].

[1]
Chavan A A, Ramaswamy D V N, Tao Q. Methods of forming ferroelectric capacitors. Evgeny Tsymbal Publications, 2006: 22
[2]
Chen Y Q, Liu Y L, Wang B. Minimum size of 180 degree domains in ferroelectric thin films covered by electrodes. Appl Math Mech, 2006, 27(8): 1031 doi: 10.1007/s10483-006-0803-1
[3]
Valasek L. Piezo-electric and allied phenomena in Rochelle salt. Phys Rev, 1921, 17: 475 doi: 10.1103/PhysRev.17.475
[4]
Furukawa T, Nakajima T, Takahashi Y. Factor governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films. IEEE Trans Dielectr Electr Insul, 2006, 13(5): 1120 doi: 10.1109/TDEI.2006.247840
[5]
Furukawa T. Recent advances in ferroelectric polymers. Ferroelectrics, 1990, 104(1): 229 doi: 10.1080/00150199008223826
[6]
Kepler R G, Anderson R A. Ferroelectric polymers. Adv Phys, 1992, 41(1): 1 doi: 10.1080/00018739200101463
[7]
Martins P, Lopes A C, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci, 2014, 39(4): 683 doi: 10.1016/j.progpolymsci.2013.07.006
[8]
Kang S J, Park Y J, Sung J, et al. Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. Appl Phys Lett, 2008, 92(1): 012921 doi: 10.1063/1.2830701
[9]
Li C, Wu P M, Lee S, et al. Flexible dome and bump shape piezoelectric tactile sensors using PVDF-TrFE copolymer. J Microelectromech Syst, 2008, 17(2): 334 doi: 10.1109/JMEMS.2007.911375
[10]
Cavallini M. Status and perspectives in thin films and patterning of spin crossover compounds. Phys Chem Chem Phys, 2012, 14(34): 11867 doi: 10.1039/c2cp40879a
[11]
Dietze M, Es-Souni M. Structural and functional properties of screen-printed PZT–PVDF-TrFE composites. Sens Actuators A, 2008, 143(2): 329 doi: 10.1016/j.sna.2007.11.016
[12]
Ducharme S, Bune A V, Blinov L M, et al. Critical point in ferroelectric Langmuir-Blodgett polymer films. Phys Rev B, 1998, 57(1): 25 doi: 10.1103/PhysRevB.57.25
[13]
Persano L, Dagdeviren C, Su Y, et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun, 2013, 4(3): 67 doi: 10.1038/ncomms2639
[14]
Delongchamp D M, Vogel B M, Jung Y, et al. Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem Mater, 2005, 17(23): 5610 doi: 10.1021/cm0513637
[15]
Nguyen H T, Nguyen L T T, Nguyen T T, et al. Synthesis of hyperbranched conjugated polymers based on 3-hexylthiophene, triphenylamine and benzo [c] [1,2,5] thiadiazole moieties: convenient synthesis through suzuki polymerization and impact of structures on optical properties. J Polym Res, 2014, 21(9): 1
[16]
Park M S, Joo W, Kim J K. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition. Langmuir, 2006, 22(10): 4594 doi: 10.1021/la053009t
[17]
Lau K, Liu Y, Chen H, et al. Effect of annealing temperature on the morphology and piezoresponse characterisation of poly(vinylidene fluoride-trifluoroethylene) films via scanning probe microscopy. Adv Condens Matter Phys, 2013, 2013(1): 1 doi: 10.1155/2013/435938
[18]
Schick M J. Aggregation processes in solution. J Polym Sci C, 1984, 22(1): 50.
[19]
Kotsuki K, Tanaka H, Obata S, et al. The importance of spinning speed in fabrication of spin-coated organic thin film transistors: film morphology and field effect mobility. Appl Phys Lett, 2014, 104(23): 233306 doi: 10.1063/1.4883216
[20]
Feng T T, Xie D, Zang Y Y, et al. Temperature control of P(VDF-TrFE) copolymer thin films. Integr Ferroelectr, 2013, 141(1): 187 doi: 10.1080/10584587.2012.694748
[21]
Mao D, Quevedo-Lopez M A, Stiegler H, et al. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics. Org Electron, 2010, 11(5): 925 doi: 10.1016/j.orgel.2010.02.012
[22]
Ducharme S, Reece T J, Othon C M, et al. Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications. IEEE Trans Device Mater Reliab, 2006, 5(4): 720 doi: 10.1109/TDMR.2005.860818
[23]
Gerber A, Fitsilis M, Waser R, et al. Ferroelectric field effect transistors using very thin ferroelectric polyvinylidene fluoride copolymer films as gate dielectrics. J Appl Phys, 2010, 107(12): 124119 doi: 10.1063/1.3437638
[24]
Brondijk J J, Asadi K, Blom P W M, et al. Physics of organic ferroelectric field-effect transistors. J Polym Sci B, 2011, 50(1): 47 doi: 10.1002/polb.22363
[25]
Naber R C G, Tanase C, Blom P W M, et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat Mater, 2005, 4(3): 243 doi: 10.1038/nmat1329
[26]
Naber R C G, Massolt J, Spijkman M, et al. Origin of the drain current bistability in polymer ferroelectric field-effect transistors. Appl Phys Lett, 2007, 90(11): 142 doi: 10.1063/1.1533844
[27]
Reece T J, Gerber A, Kohlstedt H, et al. Investigation of state retention in metal–ferroelectric–insulator–semiconductor structures based on Langmuir–Blodgett copolymer films. J Appl Phys, 2010, 108(2): 044103
[28]
Zheng Y, Ni G X, Toh C T, et al. Gate-controlled nonvolatile graphene-ferroelectric memory. Appl Phys Lett, 2009, 94(16): 666 doi: 10.1063/1.2749841
[29]
Naber R C G, Asadi K, Blom P W M, et al. Organic Nonvolatile Memory Devices Based on Ferroelectricity[J]. Advanced Materials, 2010, 22(9):933-45. doi: 10.1002/adma.200900759
[30]
Naber R C G, De Boer B, Blom P W M, et al. Low-voltage polymer field-effect transistors for nonvolatile memories. Appl Phys Lett, 2005, 87(20): 166
[31]
Sirringhaus H, Brown P J, Friend R H, et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999, 401(6754): 685 doi: 10.1038/44359
[32]
Steudel S, De Vusser S, De Jonge S, et al. Influence of the dielectric roughness on the performance of pentacene transistors. Appl Phys Lett, 2004, 85(19): 4400 doi: 10.1063/1.1815042
[33]
Naber R C G, Mulder M, Boer B D, et al. High charge density and mobility in poly(3-hexylthiophene) using a polarizable gate dielectric. Org Electron, 2006, 7(3): 132 doi: 10.1016/j.orgel.2005.11.007
[34]
Laudari A, Guha S. Bandlike transport in ferroelectric-based organic field-effect transistors. Phys Rev Appl, 2016, 6(4): 044007 doi: 10.1103/PhysRevApplied.6.044007
[35]
Narayanan Unni K N, De Bettignies R, Dabos-Seignon S, et al. A nonvolatile memory element based on an organic field-effect transistor. Appl Phys Lett, 2004, 85(10): 1823 doi: 10.1063/1.1788887
[36]
Nguyen C A, Lee P S, Mhaisalkar S G. Investigation of turn-on voltage shift in organic ferroelectric transistor with high polarity gate dielectric. Org Electron, 2007, 8(4): 415 doi: 10.1016/j.orgel.2007.01.010
[37]
Sun Y L, Xie D, Xu J L, et al. Pentacene organic ferroelectric transistors with [P(VDF-TrFE)] gate by Langmuir- Blodgett process. J Appl Phys, 2015, 118: 115501 doi: 10.1063/1.4930867
[38]
Gundlach D J, Jackson T N, Schlom D G, et al. Solvent-induced phase transition in thermally evaporated pentacene films. Appl Phys Lett, 1999, 74(22): 3302 doi: 10.1063/1.123325
[39]
Nguyen C A, Mhaisalkar S G, Ma J, et al. Enhanced organic ferroelectric field effect transistor characteristics with strained poly(vinylidene fluoride-trifluoroethylene) dielectric. Org Electron, 2008, 9(6): 1087 doi: 10.1016/j.orgel.2008.08.012
[40]
Kusuma D Y, Nguyen C A, Lee P S. Enhanced ferroelectric switching characteristics of P(VDF-TrFE) for organic memory devices. J Phys Chem B, 2010, 114(42): 13289 doi: 10.1021/jp105249f
[41]
Matsuo Y, Ijichi T, Yamada H, et al. Electrical properties and memory effect in the field effect transistor based on organic ferroelectric insulator and pentacene. Centr Europ J Phys, 2004, 2(2): 357
[42]
Matsuo Y, Ijichi T, Hatori J, et al. Fabrication and electrical properties of field effect transistor based on ferroelectric insulator and pentacene film. Curr Appl Phys, 2004, 4(2): 210
[43]
Schroeder R, Majewski L, Grell M. All-organic permanent memory transistor using an amorphous, spin-cast ferroelectric-like gate insulator. Adv Mater, 2004, 16(7): 633 doi: 10.1002/(ISSN)1521-4095
[44]
Schroeder R, Majewski L A, Voigt M, et al. Memory performance and retention of an all-organic ferroelectric-like memory transistor. IEEE Electron Device Lett, 2005, 26(2): 69 doi: 10.1109/LED.2004.841186
[45]
Noda K, Ishida K, Kubono A, et al. Remanent polarization of evaporated films of vinylidene fluoride oligomers. J Appl Phys, 2003, 93(5): 2866 doi: 10.1063/1.1540231
[46]
Matsumoto A, Horie S, Yamada H, et al. Ferro-and piezoelectric properties of vinylidene fluoride oligomer thin film fabricated on flexible polymer film. Appl Phys Lett, 2007, 90(20): 202906 doi: 10.1063/1.2740117
[47]
Sun H, Wang Q, Li Y, et al. Boost up carrier mobility for ferroelectric organic transistor memory via buffering interfacial polarization fluctuation. Sci Rep, 2014, 4: 7227 doi: 10.1038/srep07227
[48]
Liu C, Xu Y, Noh Y Y. Contact engineering in organic field-effect transistors. Mater Today, 2015, 18(2): 79 doi: 10.1016/j.mattod.2014.08.037
[49]
Muccini M. A bright future for organic field-effect transistors. Nat Mater, 2006, 5(8):605 doi: 10.1038/nmat1699
[50]
Klauk H, Schmid G, Radlik W, et al. Contact resistance in organic thin film transistors. Solid-State Electron, 2003, 47(2): 297 doi: 10.1016/S0038-1101(02)00210-1
[51]
Minari T, Miyadera T, Tsukagoshi K, et al. Scaling effect on the operation stability of short-channel organic single-crystal transistors. Appl Phys Lett, 2007, 91(6): 063506 doi: 10.1063/1.2767987
[52]
Herlogsson L, Crispin X, Tierney S, et al. Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv Mater, 2011, 23(40): 4684 doi: 10.1002/adma.201101757
[53]
Sun H, Yin Y, Wang Q, et al. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface. Appl Phys Lett, 2015, 117(23): 12337
[54]
Cheng C H, Yeh F S, Chin A. Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance. Adv Mater, 2011, 23(7): 902 doi: 10.1002/adma.v23.7
[55]
Baeg K J, Khim D, Kim J, et al. Organic electronics: high-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible NAND flash Memory. Adv Funct Mater, 2012, 22(14): 2881 doi: 10.1002/adfm.v22.14
[56]
Yoon S M, Yang S, Byun C W, et al. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel. Semicond Sci Technol, 2011, 26(3): 034007 doi: 10.1088/0268-1242/26/3/034007
[57]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[58]
Yoon S, Yang S, Byun C, et al. Fully Transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C. Adv Funct Mater, 2010, 20(6): 921 doi: 10.1002/adfm.200902095
[59]
Yoon S M, Yang S, Byun C W, et al. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel. Semicond Sci Technol, 2011, 26(3): 034007 doi: 10.1088/0268-1242/26/3/034007
[60]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[61]
Noh S H, Choi W, Min S O, et al. ZnO-based nonvolatile memory thin-film transistors with polymer dielectric/ferroelectric double gate insulators. Appl Phys Lett, 2007, 90(25): 253504. doi: 10.1063/1.2749841
[62]
Lee G G, Fujisaki Y, Ishiwara H, et al. Low-voltage operation of ferroelectric gate thin film transistors using indium gallium zinc oxide-channel and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Express, 2011, 4(9): 544
[63]
Yoon S M, Yang S, Ryu M K, et al. Oxide semiconductor-based organic/inorganic hybrid dual-gate nonvolatile memory thin-film transistor. IEEE Trans Electron Devices, 2011, 58(7): 2135 doi: 10.1109/TED.2011.2139212
[64]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 243
[65]
Breemen A V, Kam B, Cobb B, et al. Ferroelectric transistor memory arrays on flexible foils. Org Electron, 2013, 14(8): 1966 doi: 10.1016/j.orgel.2013.04.025
[66]
Yoon S M, Yang S, Park S H K. Flexible nonvolatile memory thin-film transistor using ferroelectric copolymer gate insulator and oxide semiconducting channel. J Electrochem Soc, 2011, 158(9): H892 doi: 10.1149/1.3609842
[67]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 243
[68]
Park C H, Lee G, Lee K H, et al. Enhancing the retention properties of ZnO memory transistor by modifying the channel/ferroelectric polymer interface. Appl Phys Lett, 2009, 95(15): 386
[69]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[70]
Yoon S M, Yang S H, Park S H K, et al. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer. J Phys D, 2009, 42(24): 245101 doi: 10.1088/0022-3727/42/24/245101
[71]
Park C H, Lee K H, Lee B H, et al. Channel/ferroelectric interface modification in ZnO non-volatile memory TFT with P (VDF-TrFE) polymer. J Mater Chem, 2010, 20(13): 2638 doi: 10.1039/B921732K
[72]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[73]
Petti L, Munzenrieder N, Salvatore G A, et al. Influence of mechanical bending on flexible InGaZnO-based ferroelectric memory TFTs. IEEE Trans Electron Devices, 2014, 61(4): 1085 doi: 10.1109/TED.2014.2304307
[74]
Fortunato E, Barquinha P, Martins R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 2012, 43(34): 2945
[75]
Tomai S, Nishimura M, Itose M, et al. High-performance thin film transistor with amorphous In2O3-SnO2-ZnO channel layer. Jpn J Appl Phys, 2013, 51(3S): 03CB01
[76]
Maruyama T, Tago T. Germanium- and silicon-doped indium-oxide thin films prepared by radio-frequency magnetron sputtering. Appl Phys Lett, 1994, 64(11):1395 doi: 10.1063/1.111894
[77]
Kumomi H, Yaginuma S, Omura H, et al. Materials, devices, and circuits of transparent amorphous-oxide semiconductor. J Display Technol, 2009, 5(12): 531 doi: 10.1109/JDT.2009.2025521
[78]
Aikawa S, Darmawan P, Yanagisawa K, et al. Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor. Appl Phys Lett, 2013, 102(10): 102101 doi: 10.1063/1.4794903
[79]
Kizu T, Aikawa S, Mitoma N, et al. Low-temperature processable amorphous In–W–O thin-film transistors with high mobility and stability. Appl Phys Lett, 2014, 104(15): 3787
[80]
Nomura K, Ohta H, Takagi A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004, 432(7016): 488 doi: 10.1038/nature03090
[81]
Wang Y, Kizu T, Song L, et al. High-performance non-volatile field-effect transistor memories using an amorphous oxide semiconductor and ferroelectric polymer. J Mater Chem C, 2016, 4(34): 7917 doi: 10.1039/C6TC01768A
[82]
Li Y, Liu C, Pan L, et al. Electrical switching behavior from all-polymer-based system of semiconductor/ferroelectrics/semiconductor. Appl Phys Lett, 2011, 98(17): 83
[83]
Kusuma D Y, Lee P S. Ferroelectric tunnel junction memory devices made from monolayers of vinylidene fluoride oligomers. Adv Mater, 2012, 24(30): 4163 doi: 10.1002/adma.201104476
[84]
Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108(52): 19912 doi: 10.1021/jp040650f
[85]
Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312: 1191 doi: 10.1126/science.1125925
[86]
Lemme M C, Echtermeyer T J, Baus M, et al. A graphene field-effect device. IEEE Electron Device Lett, 2007, 28(4): 282 doi: 10.1109/LED.2007.891668
[87]
Wang X, Ouyang Y, Li X, et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett, 2008, 100: 206803 doi: 10.1103/PhysRevLett.100.206803
[88]
Han M Y, Özyilmaz B, Zhang Y, et al. Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett, 2007, 98: 206805 doi: 10.1103/PhysRevLett.98.206805
[89]
Lin Y M, Avouris P. Strong suppression of electrical noise in bilayer graphene nanodevices.. Nano Lett, 2008, 8(8): 2119 doi: 10.1021/nl080241l
[90]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nat Nanotechnol, 2011, 6(3): 147 doi: 10.1038/nnano.2010.279
[91]
Radisavljevic B, Whitwick M B, Kis A. Integrated circuits and logic operations based on single-layer MoS2. Acs Nano, 2011, 5(12): 9934 doi: 10.1021/nn203715c
[92]
Das S, Appenzeller J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl Phys Lett, 2013, 103(10): 1497
[93]
Fang H, Chuang S, Chang T C, et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett, 2012, 12(7): 3788 doi: 10.1021/nl301702r
[94]
Lee H S, Min S W, Chang Y G, et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett, 2012, 12: 3695 doi: 10.1021/nl301485q
[95]
Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater, 2013, 12(9): 815 doi: 10.1038/nmat3687
[96]
Kim S, Konar A, Hwang W S, et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat Commun, 2012, 3(8): 1011
[97]
Li L, Yu Y, Ye G J, et al. Black phosphorus field-effect transistors. Nat Nanotechnol, 2014, 9(5): 372 doi: 10.1038/nnano.2014.35
[98]
Han Liu, Adam T. Neal, Zhen Zhu, et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8: 4033 doi: 10.1021/nn501226z
[99]
Zhang S, Yang J, Xu R, et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. Acs Nano, 2014, 8(9): 9590 doi: 10.1021/nn503893j
[100]
Das S, Zhang W, Demarteau M, et al. Tunable transport gap in phosphorene. Nano Lett, 2014, 14(10): 5733 doi: 10.1021/nl5025535
[101]
Du Y, Liu H, Deng Y, et al. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. Acs Nano, 2014, 8(10): 10035 doi: 10.1021/nn502553m
[102]
Das S, Demarteau M, Roelofs A K. Ambipolar phosphorene field effect transistor. Acs Nano, 2014, 8(11): 11730 doi: 10.1021/nn505868h
[103]
Lee Y T, Kwon H, Kim J S, et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P(VDF-TrFE) polymer. Acs Nano, 2015, 9(10): 10394 doi: 10.1021/acsnano.5b04592
[104]
Naber R C G, Asadi K, Blom P W M, et al. Organic nonvolatile memory devices based on ferroelectricity. Adv Mater, 2010, 22(9): 933 doi: 10.1002/adma.200900759
[105]
Park Y J, Bae I S, Kang S J, et al. Control of thin ferroelectric polymer films for non-volatile memory applications. IEEE Trans Dielectr Electr Insul, 2010, 17(4): 1135 doi: 10.1109/TDEI.2010.5539685
[106]
Lee K H, Lee G, Lee K, et al. High-mobility nonvolatile memory thin-film transistors with a ferroelectric polymer interfacing ZnO and Pentacene channels. Adv Mater, 2010, 21(42): 4287
[107]
Naber R C G, De Boer B, Blom P W M, et al. Low-voltage polymer field-effect transistors for nonvolatile memories. Appl Phys Lett, 2005, 87(20): 166
[108]
Lee G G, Tokumitsu E, Yoon S M, et al. The flexible non-volatile memory devices using oxide semiconductors and ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene). Appl Phys Lett, 2011, 99(1): 243
[109]
Yoon S, Yang S, Byun C, et al. Fully transparent non-volatile memory thin-film transistors using an organic ferroelectric and oxide semiconductor below 200 °C. Adv Funct Mater, 2010, 20(6): 921 doi: 10.1002/adfm.200902095
[110]
Yoon S M, Yang S, Byun C W, et al. Nonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel. Semicond Sci Technol, 2011, 26(3): 034007 doi: 10.1088/0268-1242/26/3/034007
[111]
Korotcenkov G. Metal oxides for solid-state gas sensors: what determines our choice. Mater Sci Eng B, 2007, 139(1): 1 doi: 10.1016/j.mseb.2007.01.044
[112]
Batzill M, Diebold U. The surface and materials science of tin oxide. Prog Surf Sci, 2005, 79: 47 doi: 10.1016/j.progsurf.2005.09.002
[113]
Ogo Y, Hiramatsu H, Nomura K, et al. p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl Phys Lett, 2008, 93(3): 488
[114]
Yabuta H, Kaji N, Hayashi R, et al. Sputtering formation of p-type SnO thin-film transistors on glass toward oxide complimentary circuits. Appl Phys Lett, 2010, 97(7): 488
[115]
Caraveo-Frescas J A, Nayak P K, Al-Jawhari H A, et al. Record mobility in transparent p-type tin monoxide films and devices by phase engineering. Acs Nano, 2013, 7(6): 5160 doi: 10.1021/nn400852r
[116]
Ogo Y, Hiramatsu H, Nomura K, et al. Tin monoxide as an s-orbital-based p-type oxide semiconductor: Electronic structures and TFT application. Phys Status Solidi, 2009, 206(9): 2187 doi: 10.1002/pssa.v206:9
[117]
Caraveofrescas J A, Khan M A, Alshareef H N. Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility. Sci Rep, 2014, 4(23): 5243 doi: 10.1002/pssa.v206:9
[118]
Haibin Su, Alejandro Strachan, and William A. Goddard. Density functional theory and molecular dynamics studies on energetics and kinetics for electro-active polymers: PVDF and P(VDF–TrFE)[C]. 2005 APS March Meeting, American Physical Society, 2005
[119]
Sun H. Organic ferroelectric field-effect memory devices. Nanjing: Nanjing University Press, 2015
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 6170 Times PDF downloads: 171 Times Cited by: 0 Times

    History

    Received: 06 May 2017 Revised: 22 September 2017 Online: Uncorrected proof: 27 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yujia Zhang, Haiyang Wang, Lei Zhang, Xiaomeng Chen, Yu Guo, Huabin Sun, Yun Li. Field-effect transistor memories based on ferroelectric polymers[J]. Journal of Semiconductors, 2017, 38(11): 111001. doi: 10.1088/1674-4926/38/11/111001 Y J Zhang, H Y Wang, L Zhang, X M Chen, Y Guo, H B Sun, Y Li. Field-effect transistor memories based on ferroelectric polymers[J]. J. Semicond., 2017, 38(11): 111001. doi: 10.1088/1674-4926/38/11/111001.Export: BibTex EndNote
      Citation:
      Yujia Zhang, Haiyang Wang, Lei Zhang, Xiaomeng Chen, Yu Guo, Huabin Sun, Yun Li. Field-effect transistor memories based on ferroelectric polymers[J]. Journal of Semiconductors, 2017, 38(11): 111001. doi: 10.1088/1674-4926/38/11/111001

      Y J Zhang, H Y Wang, L Zhang, X M Chen, Y Guo, H B Sun, Y Li. Field-effect transistor memories based on ferroelectric polymers[J]. J. Semicond., 2017, 38(11): 111001. doi: 10.1088/1674-4926/38/11/111001.
      Export: BibTex EndNote

      Field-effect transistor memories based on ferroelectric polymers

      doi: 10.1088/1674-4926/38/11/111001
      Funds:

      Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC–JSPS Bilateral Joint Research Projects (No. 61511140098).

      More Information
      • Corresponding author: Email: yli@nju.edu.cn
      • Received Date: 2017-05-06
      • Revised Date: 2017-09-22
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return