SPECIAL ISSUE ON Si-BASED MATERIALS AND DEVICES

Si nanocrystals-based multilayers for luminescent and photovoltaic device applications

Peng Lu1, 2, Dongke Li2, Yunqing Cao2, Jun Xu2, and Kunji Chen2

+ Author Affiliations

 Corresponding author: Jun Xu, Email: junxu@nju.edu.cn

PDF

Turn off MathJax

Abstract: Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed.

Key words: quantum dotsuperlatticesluminescentphotovoltaic



[1]
Priolo F, Gregorkiewicz T, Galli M, et al. Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol, 2014, 9(1): 19 doi: 10.1038/nnano.2013.271
[2]
Liang D, Bowers J. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8): 511 doi: 10.1038/nphoton.2010.167
[3]
Wilson W, Szajowski P, Brus L. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science, 1993, 262: 1242 doi: 10.1126/science.262.5137.1242
[4]
Pavesi L, Dal Negro L, Mazzoleni C, et al. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440 doi: 10.1038/35044012
[5]
Iacona F, Irrera A, Franzo G, et al. Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and Er-doped nanoclusters. IEEE J Sel Top Quantum Electron, 2006, 12: 1596 doi: 10.1109/JSTQE.2006.880605
[6]
Cullis A, Canham L, Calcott P. The structural and luminescence properties of porous silicon. J Appl Phys, 1997, 82(3): 909 doi: 10.1063/1.366536
[7]
Huisken F, Ledoux G, Guillois O, et al. Light-emitting silicon nanocrystals from laser pyrolysis. Adv Mate, 2002, 14(24): 1861 doi: 10.1002/adma.200290021
[8]
Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett, 2005, 5(4): 655 doi: 10.1021/nl050066y
[9]
Pelant I. Optical gain in silicon nanocrystals: Current status and perspectives. Phys Status Solidi A, 2011, 208(3): 625 doi: 10.1002/pssa.v208.3
[10]
Khriachtchev L, Novikov S, Lahtinen J. Thermal annealing of Si/SiO2 materials: Modification of structural and photoluminescence emission properties. J Appl Phys, 2002, 92(10): 5856 doi: 10.1063/1.1516616
[11]
Lu Z, Lockwood D, Baribeau J. Quantum confinement and light emission in SiO2/Si superlattices. Nature, 1995, 378(6554): 258 doi: 10.1038/378258a0
[12]
Mirabella S, Agosta R, Franzò G, et al. Light absorption in silicon quantum dots embedded in silica. J Appl Phys, 2009, 106(10): 103505 doi: 10.1063/1.3259430
[13]
Roussel M, Talbot E, Pareige P, et al. Influence of the supersaturation on Si diffusion and growth of Si nanoparticles in silicon-rich silica. J Appl Phys, 2013, 113(6): 063519 doi: 10.1063/1.4792218
[14]
Photopoulos P, Nassiopoulou A G, Kouvatsos D N, et al. Photo-and electroluminescence from nanocrystalline silicon single and multilayer structures. Mater Sci Eng B, 2000, 69: 345
[15]
Wang M, Huang X, Xu J, et al. Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices. Appl Phys Lett, 1998, 72(6): 722 doi: 10.1063/1.120857
[16]
Ovchinnikov V, Malinin A, Sokolov V, et al. Photo and electroluminescence from PECVD grown a-Si: H/SiO2 multilayers. Opt Mater, 2001, 17(1): 103
[17]
Nihonyanagi S, Nishimoto K, Kanemitsu Y. Visible photoluminescence and quantum confinement effects in amorphous Si/SiO2 multilayer structures. J Non-Cryst Solids, 2002, 299: 1095
[18]
Chen G, Xu J, Xu W, et al. Dynamical process of KrF pulsed excimer laser crystallization of ultrathin amorphous silicon films to form Si nano-dots. J Appl Phys, 2012, 111(9): 094320 doi: 10.1063/1.4716467
[19]
Chen K, Huang X, Xu J, et al. Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures. Appl Phys Lett, 1992, 61(17): 2069 doi: 10.1063/1.108309
[20]
Cen Z, Xu J, Liu Y, et al. Visible light emission from single layer Si nanodots fabricated by laser irradiation method. Appl Phys Lett, 2006, 89(16): 163107 doi: 10.1063/1.2362577
[21]
Huang X, Li Z, Wu W, et al. Microstructures and optical properties in crystallized a-Si: H multi-quantum wells using excimer laser annealing. J Non-Cryst Solids, 1996, 198: 821
[22]
Gourbilleau F, Portier X, Ternon C, et al. Si-rich/SiO2 nanostructured multilayers by reactive magnetron sputtering. Appl Phys Lett, 2001, 78(20): 3058 doi: 10.1063/1.1371794
[23]
Lu P, Mu W, Xu J, et al. Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication. Sci Rep, 2016, 6: 22888 doi: 10.1038/srep22888
[24]
Kurokawa Y, Miyajima S, Yamada A, et al. Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn J Appl Phys, 2006, 45(10L): L1064
[25]
Cao Y, Xu J, Ge Z, et al. Enhanced broadband spectral response and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers. J Mater Chem C, 2015, 3(46): 12061 doi: 10.1039/C5TC02585K
[26]
Canham L. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett, 1990, 57(10): 1046 doi: 10.1063/1.103561
[27]
Zacharias M, Heitmann J, Scholz R, et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett, 2002, 80(4): 661 doi: 10.1063/1.1433906
[28]
Kim T Y, Park N M, Kim K H, et al. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett, 2004, 85(22): 5355 doi: 10.1063/1.1814429
[29]
De Boer W, Timmerman D, Dohnalova K, et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat Nanotechnol, 2010, 5(12): 878 doi: 10.1038/nnano.2010.236
[30]
Takeoka S, Fujii M, Hayashi S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys Rev B, 2000, 62(24): 16820 doi: 10.1103/PhysRevB.62.16820
[31]
Inoue A, Sugimoto H, Fujii M. Photoluminescence enhancement of silicon quantum dot monolayer by double resonance plasmonic substrate. J Phys Chem C, 2017, 121(21): 11609 doi: 10.1021/acs.jpcc.7b00717
[32]
Hadjisavvas G, Kelires P. Structure and energetics of Si nanocrystals embedded in a-SiO2. Phys Rev Lett, 2004, 93(22): 226104 doi: 10.1103/PhysRevLett.93.226104
[33]
Wang X, Zhang J, Ding L, et al. Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix. Phys Rev B, 2005, 72(19): 195313
[34]
Wu W, Huang X, Chen K, et al. Room temperature visible electroluminescence in silicon nanostructures. J Vac Sci Technol A, 1999, 17(1): 159 doi: 10.1116/1.581567
[35]
Valakh M, Yukhimchuk V, Bratus’ V, et al. Optical and electron paramagnetic resonance study of light-emitting Si+ ion implanted silicon dioxide layers. J Appl Phys, 1999, 85(1): 168 doi: 10.1063/1.369464
[36]
Nishikawa H, Watanabe E, Ito D, et al. Photoluminescence study of defects in ion-implanted thermal SiO2 films. J Appl Phys, 1995, 78(2): 842 doi: 10.1063/1.360274
[37]
Sakurai Y, Nagasawa K. Green photoluminescence band in γ-irradiated oxygen-surplus silica glass. J Appl Phys, 1999, 86(3): 1377 doi: 10.1063/1.370897
[38]
Wolkin M V, Jorne J, Fauchet P M, et al. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett, 1999, 82(1): 197 doi: 10.1103/PhysRevLett.82.197
[39]
Luo J, Li S, Sychugov I, et al. Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size. Nat Nanotechnol, 2017, 12(10): 930 doi: 10.1038/nnano.2017.190
[40]
Wang D, Zhang C, Zeng P, et al. An all-silicon laser based on silicon nanocrystals with high optical gains. Sci Bull, 2018, 63: 75
[41]
Yanagawa H, Inoue A, Sugimoto H, et al. Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography. J Appl Phys, 2017, 122(22): 223101 doi: 10.1063/1.5001106
[42]
Kojima T, Sugimoto H, Fujii M. Size-dependent photocatalytic activity of colloidal silicon quantum dot. J Phys Chem C, 2018, 122(3): 1874 doi: 10.1021/acs.jpcc.7b10967
[43]
Valenta J, Greben M, Gutsch S, et al. Photoluminescence performance limits of Si nanocrystals in silicon oxynitride matrices. J Appl Phys, 2017, 122(14): 144303 doi: 10.1063/1.4999023
[44]
Li D, Jiang Y, Liu J, et al. Modulation of surface states by phosphorus to improve the optical properties of ultra-small Si nanocrystals. Nanotechnology, 2017, 28(47): 475704 doi: 10.1088/1361-6528/aa852e
[45]
Wang M, Chen K, He L, et al. Green electro-and photoluminescence from nanocrystalline Si film prepared by continuous wave Ar+ laser annealing of heavily phosphorus doped hydrogenated amorphous silicon film. Appl Phys Lett, 1998, 73(1): 105 doi: 10.1063/1.121782
[46]
Rui Y, Li S, Xu J, et al. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J Appl Phys, 2011, 110(6): 064322 doi: 10.1063/1.3641989
[47]
Mu W, Zhang P, Xu J, et al. Direct-current and alternating-current driving Si quantum dots-based light emitting device. IEEE J Sel Top Quantum Electron, 2014, 20(4): 206 doi: 10.1109/JSTQE.2013.2255587
[48]
Huang R, Dong H, Wang D, et al. Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices. Appl Phys Lett, 2008, 92(18): 181106 doi: 10.1063/1.2920819
[49]
Rui Y, Li S, Xu J, et al. Comparative study of electroluminescence from annealed amorphous SiC single layer and amorphous Si/SiC multilayers. J Non-Cryst Solids, 2012, 358(17): 2114 doi: 10.1016/j.jnoncrysol.2012.01.054
[50]
Marconi A, Anopchenko A, Wang M, et al. High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling. Appl Phys Lett, 2009, 94(22): 221110 doi: 10.1063/1.3147164
[51]
Anopchenko A, Marconi A, Moser E, et al. Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers. J Appl Phys, 2009, 106(3): 033104 doi: 10.1063/1.3194315
[52]
Liu X, Zhao S, Gu W, et al. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands. ACS Appl Mater Interfaces, 2018, 10: 5959 doi: 10.1021/acsami.7b16980
[53]
Gu W, Liu X, Pi X, et al. Silicon-quantum-dot light-emitting diodes with interlayer-enhanced hole transport. IEEE Photonics J, 2017, 9(2): 4500610 doi: 10.1109/JPHOT.2017.2671023
[54]
Kim B, Cho C, Mun J, et al. Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv Mate, 2008, 20(16): 3100 doi: 10.1002/adma.v20:16
[55]
Xu X, Cao Y Q, Lu P, et al. Electroluminescence devices based on Si quantum dots/SiC multilayers embedded in PN junction. IEEE Photonics J, 2014, 6(1): 1 doi: 10.1109/JPHOT.2013.2295467
[56]
Chen D, Liu Y, Xu J, et al. Improved emission efficiency of electroluminescent device containing nc-Si/SiO2 multilayers by using nano-patterned substrate. Opt Express, 2010, 18(2): 917 doi: 10.1364/OE.18.000917
[57]
Liu Y, Xu J, Sun H, et al. Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates. Opt Express, 2011, 19(4): 3347 doi: 10.1364/OE.19.003347
[58]
Zhai Y, Cao Y, Lin Z, et al. Enhanced electroluminescence from Si quantum dots-based light-emitting devices with Si nanowire structures and hydrogen passivation. IEEE Photonics J, 2016, 8(5): 1 doi: 10.1109/JPHOT.2016.2600373
[59]
Fu S, Chen H, Wu H, et al. Enhancing the electroluminescence efficiency of Si NC/SiO2 superlattice-based light-emitting diodes through hydrogen ion beam treatment. Nanoscale, 2016, 8(13): 7155 doi: 10.1039/C5NR08470A
[60]
Ji Y, Zhai Y, Yang H, et al. Improved device performances based on Si quantum dot/Si nanowire hetero-structures by inserting an Al2O3 thin layer. Nanoscale, 2017, 9(41): 16038 doi: 10.1039/C7NR05694J
[61]
Beyer V, Schmidt B, Heinig K H, et al. Light emitting field effect transistor with two self-aligned Si nanocrystal layers. Appl Phys Lett, 2009, 95(19): 193501 doi: 10.1063/1.3242379
[62]
Brown G, Wu J. Third generation photovoltaics. Laser Photonics Rev, 2009, 3(4): 394 doi: 10.1002/(ISSN)1863-8899
[63]
Hanna M, Nozik A. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys, 2006, 100(7): 074510 doi: 10.1063/1.2356795
[64]
Shockley W, Queisser H. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3): 510 doi: 10.1063/1.1736034
[65]
Kondo M. Microcrystalline materials and cells deposited by RF glow discharge. Sol Energy Mater Sol Cells, 2003, 78(1): 543
[66]
Ioannou D, Griffin D K. Nanotechnology and molecular cytogenetics: the future has not yet arrived. Nano Rev, 2010, 1(1): 5117 doi: 10.3402/nano.v1i0.5117
[67]
Green M. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Prog Photovoltaics: Res Appl, 2001, 9(2): 123 doi: 10.1002/(ISSN)1099-159X
[68]
Cho E, Green M, Conibeer G, et al. Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells. Adv Opt Electron, 2007, 2007: 69578
[69]
Meillaud F, Shah A, Droz C, et al. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells, 2006, 90(18): 2952
[70]
Cho E, Park S, Hao X, et al. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 2008, 19(24): 245201 doi: 10.1088/0957-4484/19/24/245201
[71]
Park S, Cho E, Song D, et al. n-type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol Energy Mater Sol Cells, 2009, 93(6): 684
[72]
Kim T, Baek H, Jang J, et al. SIMS depth profiling analysis of P-doped n-type Si layer to develop the Si QD solar cell. Surf Interface Anal, 2014, 46(S1): 341 doi: 10.1002/sia.v46.S1
[73]
Jiang C, Green M. Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys, 2006, 99(11): 114902 doi: 10.1063/1.2203394
[74]
Ding K, Aeberhard U, Astakhov O, et al. Defect passivation by hydrogen reincorporation for silicon quantum dots in SiC/SiOx hetero-superlattice. J Non-Cryst Solids, 2012, 358(17): 2145 doi: 10.1016/j.jnoncrysol.2011.12.092
[75]
Cheng Q, Tam E, Xu S, et al. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Nanoscale, 2010, 2(4): 594 doi: 10.1039/b9nr00371a
[76]
Song D, Cho E, Conibeer G, et al. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Sol Energy Mater Sol Cells, 2008, 92(4): 474 doi: 10.1016/j.solmat.2007.11.002
[77]
Wu P, Wang Y, Chen I. Fabrication of Si heterojunction solar cells using P-doped Si nanocrystals embedded in SiNx films as emitters. Nanoscale Res Lett, 2013, 8(1): 457 doi: 10.1186/1556-276X-8-457
[78]
Li S, Cao Y, Xu J, et al. Hydrogenated amorphous silicon-carbide thin films with high photo-sensitivity prepared by layer-by-layer hydrogen annealing technique. Appl Surf Sci, 2013, 270: 287 doi: 10.1016/j.apsusc.2012.12.176
[79]
Cao Y, Lu P, Zhang X, et al. Enhanced photovoltaic property by forming pin structures containing Si quantum dots/SiC multilayers. Nanoscale Res Lett, 2014, 9(1): 634 doi: 10.1186/1556-276X-9-634
[80]
Löper P, Stüwe D, Künle M, et al. A membrane device for substrate-free photovoltaic characterization of quantum dot based p–i–n solar cells. Adv Mate, 2012, 24(23): 3124 doi: 10.1002/adma.201200539
[81]
Perez-Wurfl I, Hao X, Gentle A, et al. Si nanocrystal p–i–n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett, 2009, 95(15): 153506 doi: 10.1063/1.3240882
[82]
Huang C, Wang X, Igarashi M, et al. Optical absorption characteristic of highly ordered and dense two-dimensional array of silicon nanodiscs. Nanotechnology, 2011, 22(10): 105301 doi: 10.1088/0957-4484/22/10/105301
[83]
Igarashi M, Fairuz Budiman M, Pan W, et al. Quantum dot solar cells using 2-dimensional array of 6.4-nm-diameter silicon nanodisks fabricated using bio-templates and neutral beam etching. Appl Phys Lett, 2012, 101(6): 063121 doi: 10.1063/1.4745195
[84]
Lu P, Xu J, Cao Y, et al. Preparation of nano-patterned Si structures for hetero-junction solar cells. Appl Surf Sci, 2015, 334: 123 doi: 10.1016/j.apsusc.2014.08.129
[85]
Xu J, Sun S, Cao Y, et al. Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties. Part Parte Syst Charact, 2014, 31(4): 459 doi: 10.1002/ppsc.201300228
[86]
Puzzo D, Henderson E, Helander M, et al. Visible colloidal nanocrystal silicon light-emitting diode. Nano Lett, 2011, 11(4): 1585 doi: 10.1021/nl1044583
[87]
Maier-Flaig F, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett, 2013, 13(2): 475 doi: 10.1021/nl3038689
[88]
Yerci S, Li R, Dal Negro L. Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Appl Phys Lett, 2010, 97(8): 081109 doi: 10.1063/1.3483771
[89]
Zhang X, Lin T, Zhang P, et al. Tunable quantum dot arrays as efficient sensitizers for enhanced near-infrared electroluminescence of erbium ions. Nanoscale, 2018, 10: 4138 doi: 10.1039/C7NR08820E
[90]
Ramírez J, Lupi F, Jambois O, et al. Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation. Nanotechnology, 2012, 23(12): 125203 doi: 10.1088/0957-4484/23/12/125203
[91]
Sugimoto H, Fujii M, Imakita K, et al. Codoping n-and p-type impurities in colloidal silicon nanocrystals: Controlling luminescence energy from below bulk band gap to visible range. J Physl Chem C, 2013, 117(22): 11850 doi: 10.1021/jp4027767
[92]
Fujii M, Toshikiyo K, Takase Y, et al. Below bulk-band-gap photoluminescence at room temperature from heavily P-and B-doped Si nanocrystals. J Appl Phys, 2003, 94(3): 1990 doi: 10.1063/1.1590409
Fig. 1.  (Color online) Schematic diagrams of Si nanocrystals-based multilayers.

Fig. 2.  (a) Cross-section TEM micrograph and (b) Raman scattering spectra of laser crystallized a-Si/a-SiN multiquantum well samples. Reprinted with the permission from Ref. [21], Copyright © 1996 Published by Elsevier B.V.. (c) Cross-sectional TEM micrograph of Si NCs/SiO2 multilayers sample; Inset is the magnified image of a single Si NC. The diameter of Si NCs is about 2.0 nm, which is consistent with the Si layer. Reprinted with the permission from Ref. [23], Copyright © 2016 Macmillan Publishers Limited, part of Springer Nature.

Fig. 3.  (Color online) (a) DC EL spectrum of Si NCs/SiO2 multilayered LED. The up inset is the schematic structure and the below one is the EL pattern. (b) Stability of the Si NCs multilayered LED under DC and AC driving conditions in the elapsed working time of 3 h with a constant applied voltage of 20 V. Reprinted with the permission from Ref. [47], Copyright © 2014 IEEE.

Fig. 4.  (Color online) Power efficiency as a function of the injected current density for the LED device without a thick injection barrier. The dashed line indicates the current density which separates dominant bipolar injection, which is more efficient, from dominant unipolar injection through the FN tunneling. The inset shows the electroluminescence spectrum of device at an injection current of 10 A/cm2. Reprinted with the permission from Ref. [50]. Copyright © 2009 American Institute of Physics.

Fig. 5.  (Color online) (a) Schematic of the structure of a Si NCs based LED. (b) EQE versus voltage for an Octyl-Si NCs based LED and a PhPr-Si NCs based LED. Reprinted with the permission from Ref. [52], Copyright © 2018 American Chemical Society.

Fig. 6.  (Color online) (a) The cross-section transmission electron microscopy image for Si NCs/SiO2 multilayers deposited on nano-patterned substrate. Reprinted with the permission from Ref. [57], Copyright © 2011 Optical Society of America. (b) The integrated EL intensity versus the applied voltage for the flat and nanopatterned devices. Reprinted with the permission from Ref. [56], Copyright © 2010 Optical Society of America.

Fig. 7.  (Color online) The current density of as-deposited and 900 °C annealed solar cells with p–i–n structures. Inset is the schematic diagram of the device structure. Reprinted with the permission from Ref. [79], Copyright © 2014 Springer Open.

Fig. 8.  (Color online) (a) Schematic diagram of hetero-junction solar cells containing Si QDs/SiC MLs on flat n-Si substrates and Si NWs substrates. (b) The illuminated JV curves of graded-size Si NCs/c-Si and graded-size Si NCs/Si nanowires cells. The inset is the dark IV curves. Reprinted with the permission from Ref. [25], Copyright © 2015 The Royal Society of Chemistry.

Fig. 9.  (Color online) Schematic diagram of p–i–n solar cell structure changed from Si substrate to non-Si substrate with Si NCs-based multilayers in the intrinsic region for studying PV properties of Si NCs alone.

[1]
Priolo F, Gregorkiewicz T, Galli M, et al. Silicon nanostructures for photonics and photovoltaics. Nat Nanotechnol, 2014, 9(1): 19 doi: 10.1038/nnano.2013.271
[2]
Liang D, Bowers J. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8): 511 doi: 10.1038/nphoton.2010.167
[3]
Wilson W, Szajowski P, Brus L. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science, 1993, 262: 1242 doi: 10.1126/science.262.5137.1242
[4]
Pavesi L, Dal Negro L, Mazzoleni C, et al. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440 doi: 10.1038/35044012
[5]
Iacona F, Irrera A, Franzo G, et al. Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and Er-doped nanoclusters. IEEE J Sel Top Quantum Electron, 2006, 12: 1596 doi: 10.1109/JSTQE.2006.880605
[6]
Cullis A, Canham L, Calcott P. The structural and luminescence properties of porous silicon. J Appl Phys, 1997, 82(3): 909 doi: 10.1063/1.366536
[7]
Huisken F, Ledoux G, Guillois O, et al. Light-emitting silicon nanocrystals from laser pyrolysis. Adv Mate, 2002, 14(24): 1861 doi: 10.1002/adma.200290021
[8]
Mangolini L, Thimsen E, Kortshagen U. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett, 2005, 5(4): 655 doi: 10.1021/nl050066y
[9]
Pelant I. Optical gain in silicon nanocrystals: Current status and perspectives. Phys Status Solidi A, 2011, 208(3): 625 doi: 10.1002/pssa.v208.3
[10]
Khriachtchev L, Novikov S, Lahtinen J. Thermal annealing of Si/SiO2 materials: Modification of structural and photoluminescence emission properties. J Appl Phys, 2002, 92(10): 5856 doi: 10.1063/1.1516616
[11]
Lu Z, Lockwood D, Baribeau J. Quantum confinement and light emission in SiO2/Si superlattices. Nature, 1995, 378(6554): 258 doi: 10.1038/378258a0
[12]
Mirabella S, Agosta R, Franzò G, et al. Light absorption in silicon quantum dots embedded in silica. J Appl Phys, 2009, 106(10): 103505 doi: 10.1063/1.3259430
[13]
Roussel M, Talbot E, Pareige P, et al. Influence of the supersaturation on Si diffusion and growth of Si nanoparticles in silicon-rich silica. J Appl Phys, 2013, 113(6): 063519 doi: 10.1063/1.4792218
[14]
Photopoulos P, Nassiopoulou A G, Kouvatsos D N, et al. Photo-and electroluminescence from nanocrystalline silicon single and multilayer structures. Mater Sci Eng B, 2000, 69: 345
[15]
Wang M, Huang X, Xu J, et al. Observation of the size-dependent blueshifted electroluminescence from nanocrystalline Si fabricated by KrF excimer laser annealing of hydrogenated amorphous silicon/amorphous-SiNx:H superlattices. Appl Phys Lett, 1998, 72(6): 722 doi: 10.1063/1.120857
[16]
Ovchinnikov V, Malinin A, Sokolov V, et al. Photo and electroluminescence from PECVD grown a-Si: H/SiO2 multilayers. Opt Mater, 2001, 17(1): 103
[17]
Nihonyanagi S, Nishimoto K, Kanemitsu Y. Visible photoluminescence and quantum confinement effects in amorphous Si/SiO2 multilayer structures. J Non-Cryst Solids, 2002, 299: 1095
[18]
Chen G, Xu J, Xu W, et al. Dynamical process of KrF pulsed excimer laser crystallization of ultrathin amorphous silicon films to form Si nano-dots. J Appl Phys, 2012, 111(9): 094320 doi: 10.1063/1.4716467
[19]
Chen K, Huang X, Xu J, et al. Visible photoluminescence in crystallized amorphous Si:H/SiNx:H multiquantum-well structures. Appl Phys Lett, 1992, 61(17): 2069 doi: 10.1063/1.108309
[20]
Cen Z, Xu J, Liu Y, et al. Visible light emission from single layer Si nanodots fabricated by laser irradiation method. Appl Phys Lett, 2006, 89(16): 163107 doi: 10.1063/1.2362577
[21]
Huang X, Li Z, Wu W, et al. Microstructures and optical properties in crystallized a-Si: H multi-quantum wells using excimer laser annealing. J Non-Cryst Solids, 1996, 198: 821
[22]
Gourbilleau F, Portier X, Ternon C, et al. Si-rich/SiO2 nanostructured multilayers by reactive magnetron sputtering. Appl Phys Lett, 2001, 78(20): 3058 doi: 10.1063/1.1371794
[23]
Lu P, Mu W, Xu J, et al. Phosphorus doping in Si nanocrystals/SiO2 multilayers and light emission with wavelength compatible for optical telecommunication. Sci Rep, 2016, 6: 22888 doi: 10.1038/srep22888
[24]
Kurokawa Y, Miyajima S, Yamada A, et al. Preparation of nanocrystalline silicon in amorphous silicon carbide matrix. Jpn J Appl Phys, 2006, 45(10L): L1064
[25]
Cao Y, Xu J, Ge Z, et al. Enhanced broadband spectral response and energy conversion efficiency for hetero-junction solar cells with graded-sized Si quantum dots/SiC multilayers. J Mater Chem C, 2015, 3(46): 12061 doi: 10.1039/C5TC02585K
[26]
Canham L. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett, 1990, 57(10): 1046 doi: 10.1063/1.103561
[27]
Zacharias M, Heitmann J, Scholz R, et al. Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett, 2002, 80(4): 661 doi: 10.1063/1.1433906
[28]
Kim T Y, Park N M, Kim K H, et al. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett, 2004, 85(22): 5355 doi: 10.1063/1.1814429
[29]
De Boer W, Timmerman D, Dohnalova K, et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat Nanotechnol, 2010, 5(12): 878 doi: 10.1038/nnano.2010.236
[30]
Takeoka S, Fujii M, Hayashi S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys Rev B, 2000, 62(24): 16820 doi: 10.1103/PhysRevB.62.16820
[31]
Inoue A, Sugimoto H, Fujii M. Photoluminescence enhancement of silicon quantum dot monolayer by double resonance plasmonic substrate. J Phys Chem C, 2017, 121(21): 11609 doi: 10.1021/acs.jpcc.7b00717
[32]
Hadjisavvas G, Kelires P. Structure and energetics of Si nanocrystals embedded in a-SiO2. Phys Rev Lett, 2004, 93(22): 226104 doi: 10.1103/PhysRevLett.93.226104
[33]
Wang X, Zhang J, Ding L, et al. Origin and evolution of photoluminescence from Si nanocrystals embedded in a SiO2 matrix. Phys Rev B, 2005, 72(19): 195313
[34]
Wu W, Huang X, Chen K, et al. Room temperature visible electroluminescence in silicon nanostructures. J Vac Sci Technol A, 1999, 17(1): 159 doi: 10.1116/1.581567
[35]
Valakh M, Yukhimchuk V, Bratus’ V, et al. Optical and electron paramagnetic resonance study of light-emitting Si+ ion implanted silicon dioxide layers. J Appl Phys, 1999, 85(1): 168 doi: 10.1063/1.369464
[36]
Nishikawa H, Watanabe E, Ito D, et al. Photoluminescence study of defects in ion-implanted thermal SiO2 films. J Appl Phys, 1995, 78(2): 842 doi: 10.1063/1.360274
[37]
Sakurai Y, Nagasawa K. Green photoluminescence band in γ-irradiated oxygen-surplus silica glass. J Appl Phys, 1999, 86(3): 1377 doi: 10.1063/1.370897
[38]
Wolkin M V, Jorne J, Fauchet P M, et al. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett, 1999, 82(1): 197 doi: 10.1103/PhysRevLett.82.197
[39]
Luo J, Li S, Sychugov I, et al. Absence of redshift in the direct bandgap of silicon nanocrystals with reduced size. Nat Nanotechnol, 2017, 12(10): 930 doi: 10.1038/nnano.2017.190
[40]
Wang D, Zhang C, Zeng P, et al. An all-silicon laser based on silicon nanocrystals with high optical gains. Sci Bull, 2018, 63: 75
[41]
Yanagawa H, Inoue A, Sugimoto H, et al. Photoluminescence enhancement of silicon quantum dot monolayer by plasmonic substrate fabricated by nano-imprint lithography. J Appl Phys, 2017, 122(22): 223101 doi: 10.1063/1.5001106
[42]
Kojima T, Sugimoto H, Fujii M. Size-dependent photocatalytic activity of colloidal silicon quantum dot. J Phys Chem C, 2018, 122(3): 1874 doi: 10.1021/acs.jpcc.7b10967
[43]
Valenta J, Greben M, Gutsch S, et al. Photoluminescence performance limits of Si nanocrystals in silicon oxynitride matrices. J Appl Phys, 2017, 122(14): 144303 doi: 10.1063/1.4999023
[44]
Li D, Jiang Y, Liu J, et al. Modulation of surface states by phosphorus to improve the optical properties of ultra-small Si nanocrystals. Nanotechnology, 2017, 28(47): 475704 doi: 10.1088/1361-6528/aa852e
[45]
Wang M, Chen K, He L, et al. Green electro-and photoluminescence from nanocrystalline Si film prepared by continuous wave Ar+ laser annealing of heavily phosphorus doped hydrogenated amorphous silicon film. Appl Phys Lett, 1998, 73(1): 105 doi: 10.1063/1.121782
[46]
Rui Y, Li S, Xu J, et al. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J Appl Phys, 2011, 110(6): 064322 doi: 10.1063/1.3641989
[47]
Mu W, Zhang P, Xu J, et al. Direct-current and alternating-current driving Si quantum dots-based light emitting device. IEEE J Sel Top Quantum Electron, 2014, 20(4): 206 doi: 10.1109/JSTQE.2013.2255587
[48]
Huang R, Dong H, Wang D, et al. Role of barrier layers in electroluminescence from SiN-based multilayer light-emitting devices. Appl Phys Lett, 2008, 92(18): 181106 doi: 10.1063/1.2920819
[49]
Rui Y, Li S, Xu J, et al. Comparative study of electroluminescence from annealed amorphous SiC single layer and amorphous Si/SiC multilayers. J Non-Cryst Solids, 2012, 358(17): 2114 doi: 10.1016/j.jnoncrysol.2012.01.054
[50]
Marconi A, Anopchenko A, Wang M, et al. High power efficiency in Si-nc/SiO2 multilayer light emitting devices by bipolar direct tunneling. Appl Phys Lett, 2009, 94(22): 221110 doi: 10.1063/1.3147164
[51]
Anopchenko A, Marconi A, Moser E, et al. Low-voltage onset of electroluminescence in nanocrystalline-Si/SiO2 multilayers. J Appl Phys, 2009, 106(3): 033104 doi: 10.1063/1.3194315
[52]
Liu X, Zhao S, Gu W, et al. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands. ACS Appl Mater Interfaces, 2018, 10: 5959 doi: 10.1021/acsami.7b16980
[53]
Gu W, Liu X, Pi X, et al. Silicon-quantum-dot light-emitting diodes with interlayer-enhanced hole transport. IEEE Photonics J, 2017, 9(2): 4500610 doi: 10.1109/JPHOT.2017.2671023
[54]
Kim B, Cho C, Mun J, et al. Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons. Adv Mate, 2008, 20(16): 3100 doi: 10.1002/adma.v20:16
[55]
Xu X, Cao Y Q, Lu P, et al. Electroluminescence devices based on Si quantum dots/SiC multilayers embedded in PN junction. IEEE Photonics J, 2014, 6(1): 1 doi: 10.1109/JPHOT.2013.2295467
[56]
Chen D, Liu Y, Xu J, et al. Improved emission efficiency of electroluminescent device containing nc-Si/SiO2 multilayers by using nano-patterned substrate. Opt Express, 2010, 18(2): 917 doi: 10.1364/OE.18.000917
[57]
Liu Y, Xu J, Sun H, et al. Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates. Opt Express, 2011, 19(4): 3347 doi: 10.1364/OE.19.003347
[58]
Zhai Y, Cao Y, Lin Z, et al. Enhanced electroluminescence from Si quantum dots-based light-emitting devices with Si nanowire structures and hydrogen passivation. IEEE Photonics J, 2016, 8(5): 1 doi: 10.1109/JPHOT.2016.2600373
[59]
Fu S, Chen H, Wu H, et al. Enhancing the electroluminescence efficiency of Si NC/SiO2 superlattice-based light-emitting diodes through hydrogen ion beam treatment. Nanoscale, 2016, 8(13): 7155 doi: 10.1039/C5NR08470A
[60]
Ji Y, Zhai Y, Yang H, et al. Improved device performances based on Si quantum dot/Si nanowire hetero-structures by inserting an Al2O3 thin layer. Nanoscale, 2017, 9(41): 16038 doi: 10.1039/C7NR05694J
[61]
Beyer V, Schmidt B, Heinig K H, et al. Light emitting field effect transistor with two self-aligned Si nanocrystal layers. Appl Phys Lett, 2009, 95(19): 193501 doi: 10.1063/1.3242379
[62]
Brown G, Wu J. Third generation photovoltaics. Laser Photonics Rev, 2009, 3(4): 394 doi: 10.1002/(ISSN)1863-8899
[63]
Hanna M, Nozik A. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys, 2006, 100(7): 074510 doi: 10.1063/1.2356795
[64]
Shockley W, Queisser H. Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys, 1961, 32(3): 510 doi: 10.1063/1.1736034
[65]
Kondo M. Microcrystalline materials and cells deposited by RF glow discharge. Sol Energy Mater Sol Cells, 2003, 78(1): 543
[66]
Ioannou D, Griffin D K. Nanotechnology and molecular cytogenetics: the future has not yet arrived. Nano Rev, 2010, 1(1): 5117 doi: 10.3402/nano.v1i0.5117
[67]
Green M. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Prog Photovoltaics: Res Appl, 2001, 9(2): 123 doi: 10.1002/(ISSN)1099-159X
[68]
Cho E, Green M, Conibeer G, et al. Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells. Adv Opt Electron, 2007, 2007: 69578
[69]
Meillaud F, Shah A, Droz C, et al. Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells, 2006, 90(18): 2952
[70]
Cho E, Park S, Hao X, et al. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology, 2008, 19(24): 245201 doi: 10.1088/0957-4484/19/24/245201
[71]
Park S, Cho E, Song D, et al. n-type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol Energy Mater Sol Cells, 2009, 93(6): 684
[72]
Kim T, Baek H, Jang J, et al. SIMS depth profiling analysis of P-doped n-type Si layer to develop the Si QD solar cell. Surf Interface Anal, 2014, 46(S1): 341 doi: 10.1002/sia.v46.S1
[73]
Jiang C, Green M. Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys, 2006, 99(11): 114902 doi: 10.1063/1.2203394
[74]
Ding K, Aeberhard U, Astakhov O, et al. Defect passivation by hydrogen reincorporation for silicon quantum dots in SiC/SiOx hetero-superlattice. J Non-Cryst Solids, 2012, 358(17): 2145 doi: 10.1016/j.jnoncrysol.2011.12.092
[75]
Cheng Q, Tam E, Xu S, et al. Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation. Nanoscale, 2010, 2(4): 594 doi: 10.1039/b9nr00371a
[76]
Song D, Cho E, Conibeer G, et al. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Sol Energy Mater Sol Cells, 2008, 92(4): 474 doi: 10.1016/j.solmat.2007.11.002
[77]
Wu P, Wang Y, Chen I. Fabrication of Si heterojunction solar cells using P-doped Si nanocrystals embedded in SiNx films as emitters. Nanoscale Res Lett, 2013, 8(1): 457 doi: 10.1186/1556-276X-8-457
[78]
Li S, Cao Y, Xu J, et al. Hydrogenated amorphous silicon-carbide thin films with high photo-sensitivity prepared by layer-by-layer hydrogen annealing technique. Appl Surf Sci, 2013, 270: 287 doi: 10.1016/j.apsusc.2012.12.176
[79]
Cao Y, Lu P, Zhang X, et al. Enhanced photovoltaic property by forming pin structures containing Si quantum dots/SiC multilayers. Nanoscale Res Lett, 2014, 9(1): 634 doi: 10.1186/1556-276X-9-634
[80]
Löper P, Stüwe D, Künle M, et al. A membrane device for substrate-free photovoltaic characterization of quantum dot based p–i–n solar cells. Adv Mate, 2012, 24(23): 3124 doi: 10.1002/adma.201200539
[81]
Perez-Wurfl I, Hao X, Gentle A, et al. Si nanocrystal p–i–n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett, 2009, 95(15): 153506 doi: 10.1063/1.3240882
[82]
Huang C, Wang X, Igarashi M, et al. Optical absorption characteristic of highly ordered and dense two-dimensional array of silicon nanodiscs. Nanotechnology, 2011, 22(10): 105301 doi: 10.1088/0957-4484/22/10/105301
[83]
Igarashi M, Fairuz Budiman M, Pan W, et al. Quantum dot solar cells using 2-dimensional array of 6.4-nm-diameter silicon nanodisks fabricated using bio-templates and neutral beam etching. Appl Phys Lett, 2012, 101(6): 063121 doi: 10.1063/1.4745195
[84]
Lu P, Xu J, Cao Y, et al. Preparation of nano-patterned Si structures for hetero-junction solar cells. Appl Surf Sci, 2015, 334: 123 doi: 10.1016/j.apsusc.2014.08.129
[85]
Xu J, Sun S, Cao Y, et al. Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties. Part Parte Syst Charact, 2014, 31(4): 459 doi: 10.1002/ppsc.201300228
[86]
Puzzo D, Henderson E, Helander M, et al. Visible colloidal nanocrystal silicon light-emitting diode. Nano Lett, 2011, 11(4): 1585 doi: 10.1021/nl1044583
[87]
Maier-Flaig F, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett, 2013, 13(2): 475 doi: 10.1021/nl3038689
[88]
Yerci S, Li R, Dal Negro L. Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes. Appl Phys Lett, 2010, 97(8): 081109 doi: 10.1063/1.3483771
[89]
Zhang X, Lin T, Zhang P, et al. Tunable quantum dot arrays as efficient sensitizers for enhanced near-infrared electroluminescence of erbium ions. Nanoscale, 2018, 10: 4138 doi: 10.1039/C7NR08820E
[90]
Ramírez J, Lupi F, Jambois O, et al. Erbium emission in MOS light emitting devices: from energy transfer to direct impact excitation. Nanotechnology, 2012, 23(12): 125203 doi: 10.1088/0957-4484/23/12/125203
[91]
Sugimoto H, Fujii M, Imakita K, et al. Codoping n-and p-type impurities in colloidal silicon nanocrystals: Controlling luminescence energy from below bulk band gap to visible range. J Physl Chem C, 2013, 117(22): 11850 doi: 10.1021/jp4027767
[92]
Fujii M, Toshikiyo K, Takase Y, et al. Below bulk-band-gap photoluminescence at room temperature from heavily P-and B-doped Si nanocrystals. J Appl Phys, 2003, 94(3): 1990 doi: 10.1063/1.1590409
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4414 Times PDF downloads: 75 Times Cited by: 0 Times

    History

    Received: 24 January 2018 Revised: 23 March 2018 Online: Accepted Manuscript: 04 April 2018Published: 01 June 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Peng Lu, Dongke Li, Yunqing Cao, Jun Xu, Kunji Chen. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications[J]. Journal of Semiconductors, 2018, 39(6): 061007. doi: 10.1088/1674-4926/39/6/061007 P Lu, D K Li, Y Q Cao, J Xu, K J Chen. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications[J]. J. Semicond., 2018, 39(6): 061007. doi: 10.1088/1674-4926/39/6/061007.Export: BibTex EndNote
      Citation:
      Peng Lu, Dongke Li, Yunqing Cao, Jun Xu, Kunji Chen. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications[J]. Journal of Semiconductors, 2018, 39(6): 061007. doi: 10.1088/1674-4926/39/6/061007

      P Lu, D K Li, Y Q Cao, J Xu, K J Chen. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications[J]. J. Semicond., 2018, 39(6): 061007. doi: 10.1088/1674-4926/39/6/061007.
      Export: BibTex EndNote

      Si nanocrystals-based multilayers for luminescent and photovoltaic device applications

      doi: 10.1088/1674-4926/39/6/061007
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).

      More Information
      • Corresponding author: Email: junxu@nju.edu.cn
      • Received Date: 2018-01-24
      • Revised Date: 2018-03-23
      • Published Date: 2018-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return