SEMICONDUCTOR DEVICES

High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension

Juntao Li1, 2, Chengquan Xiao1, 2, , Xingliang Xu1, 2, Gang Dai1, 2, Lin Zhang1, 2, Yang Zhou1, 2, An Xiang1, 2, Yingkun Yang1, 2 and Jian Zhang1, 2

+ Author Affiliations

 Corresponding author: Chengquan Xiao, Email:bbxcq119@163.com.cn

PDF

Abstract: This paper presents the design and fabrication of an etched implant junction termination extension (JTE) for high-voltage 4H-SiC PiN diodes. Unlike the conventional JTE structure, the proposed structure utilizes multiple etching steps to achieve the optimum JTE concentration range. The simulation results show that the etched implant JTE method can improve the blocking voltage of SiC PiN diodes and also provides broad process latitude for parameter variations, such as implantation dose and activation annealing condition. The fabricated SiC PiN diodes with the etched implant JTE exhibit a highest blocking voltage of 4.5 kV and the forward on-state voltage of 4.6 V at room temperature. These results are of interest for understanding the etched implant method in the fabrication of high-voltage power devices.

Key words: silicon carbidePiN diodeetched implant junction termination extensionblocking voltage



[1]
Bhatnagar M, Baliga B J. Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Tran Electron Devices, 1993, 40(3):645 doi: 10.1109/16.199372
[2]
Li Y Y, Deng X C, Liu Y F, et al. Effect of post oxidation annealing in nitric oxide on interface properties of 4H-SiC/SiO2 after high temperature oxidation. J Semicond, 2015, 36(9):94003 doi: 10.1088/1674-4926/36/9/094003
[3]
Wang H, Niu Y X, Yang F, et al. Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes. J Semicond, 2015, 36(10):104006 doi: 10.1088/1674-4926/36/10/104006
[4]
Zhang Q, Zhang Y M, Zhang Y M. Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination. J Semicond, 2010, 31(7):074007 doi: 10.1088/1674-4926/31/7/074007
[5]
Wang S G, Zhang Y, Zhang Y M, et al. Ohimc contacts of 4H-SiC on ion-implantation layers. Chin Phys B, 2010, 19(1):017204 doi: 10.1088/1674-1056/19/1/017204
[6]
Guo H, Zhao Y Q, Zhang Y M, et al. Influence of N-type doping on the oxidation rate in n-type 6H-SiC. J Semicond, 2015, 36(1):013006 doi: 10.1088/1674-4926/36/1/013006
[7]
Ye S B, Zhang J J, Zhang Y C, et al. Temperature-variable highfrequency dynamic modeling of PIN diode. J Semicond, 2016, 37(4):044010 doi: 10.1088/1674-4926/37/4/044010
[8]
Zheng C L, Pu H B, Li H, et al. Photoelectric properties of p-β-FeSi2/n-4H-SiC heterojunction near-infrared photodiode. J Semicond, 2015, 36(5):054009 doi: 10.1088/1674-4926/36/5/054009
[9]
Jantawongrit P, Sanorpim S, Yaguchi H, et al. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE. J Semicond, 2015, 36(8):083002 doi: 10.1088/1674-4926/36/8/083002
[10]
Huang R H, Tao Y H, Bai S, et al. Design and fabrication of a 3.3 kV 4H-SiC MOSFET. J Semicond, 2015, 36(9):094002 doi: 10.1088/1674-4926/36/9/094002
[11]
Sheridan D C, Niu G F, Merrett J N. Design and fabrication of planar guard ring termination for high-voltage SiC diodes. SolidState Electron, 2000, 44(8):1367 doi: 10.1016/S0038-1101(00)00081-2
[12]
Mahajan A, Skromme B J. Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes. Solid-State Electron, 2005, 49(6):945 doi: 10.1016/j.sse.2005.03.020
[13]
Chen S Z, Sheng K, Wang J. 1.4kV 4H-SiC PiN diode with a robust non-uniform floating guard ring termination. J Semicond, 2014, 35(5):054003 doi: 10.1088/1674-4926/35/5/054003
[14]
Pan J N, Cooper J A, Melloch M R. Activation of nitrogen implants in 6H-SiC. J Electron Mater, 1997, 26(3):208 doi: 10.1007/s11664-997-0152-2
[15]
Khemka V, Patel R, Ramungul N, et al. Characterization of phosphorus implantation in 4H-SiC. J Electron Mater, 1999, 28(3):167 doi: 10.1007/s11664-999-0008-z
[16]
Liu C J, Liu S, Feng J J, et al. Nickel ohmic contacts of highconcentration P-implanted 4H-SiC. J Semicond, 2012, 33(3):036002 doi: 10.1088/1674-4926/33/3/036002
Fig. 1.  (Color online) Schematic cross section of a SiC PiN diode with the etched implant JTE.

Fig. 2.  Photograph of the fabricated SiC PiN diodes with the etched implant JTE.

Fig. 3.  Forward I-V characteristics of the fabricated SiC PiN diodes with the etched implant JTE.

Fig. 4.  Reverse I-V characteristics of the fabricated SiC PiN diodes with the etched implant JTE.

Fig. 5.  Simulated electrical field distribution of the (a) etched implant JTE structure and (b) conventional JTE for SiC PiN diodes.

Fig. 6.  Blocking voltage of SiC PiN diodes with the etched implant JTE and conventional JTE versus the JTE doping concentration.

[1]
Bhatnagar M, Baliga B J. Comparison of 6H-SiC, 3C-SiC, and Si for power devices. IEEE Tran Electron Devices, 1993, 40(3):645 doi: 10.1109/16.199372
[2]
Li Y Y, Deng X C, Liu Y F, et al. Effect of post oxidation annealing in nitric oxide on interface properties of 4H-SiC/SiO2 after high temperature oxidation. J Semicond, 2015, 36(9):94003 doi: 10.1088/1674-4926/36/9/094003
[3]
Wang H, Niu Y X, Yang F, et al. Influences of ICP etching damages on the electronic properties of metal field plate 4H-SiC Schottky diodes. J Semicond, 2015, 36(10):104006 doi: 10.1088/1674-4926/36/10/104006
[4]
Zhang Q, Zhang Y M, Zhang Y M. Characteristics of blocking voltage for power 4H-SiC BJTs with mesa edge termination. J Semicond, 2010, 31(7):074007 doi: 10.1088/1674-4926/31/7/074007
[5]
Wang S G, Zhang Y, Zhang Y M, et al. Ohimc contacts of 4H-SiC on ion-implantation layers. Chin Phys B, 2010, 19(1):017204 doi: 10.1088/1674-1056/19/1/017204
[6]
Guo H, Zhao Y Q, Zhang Y M, et al. Influence of N-type doping on the oxidation rate in n-type 6H-SiC. J Semicond, 2015, 36(1):013006 doi: 10.1088/1674-4926/36/1/013006
[7]
Ye S B, Zhang J J, Zhang Y C, et al. Temperature-variable highfrequency dynamic modeling of PIN diode. J Semicond, 2016, 37(4):044010 doi: 10.1088/1674-4926/37/4/044010
[8]
Zheng C L, Pu H B, Li H, et al. Photoelectric properties of p-β-FeSi2/n-4H-SiC heterojunction near-infrared photodiode. J Semicond, 2015, 36(5):054009 doi: 10.1088/1674-4926/36/5/054009
[9]
Jantawongrit P, Sanorpim S, Yaguchi H, et al. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE. J Semicond, 2015, 36(8):083002 doi: 10.1088/1674-4926/36/8/083002
[10]
Huang R H, Tao Y H, Bai S, et al. Design and fabrication of a 3.3 kV 4H-SiC MOSFET. J Semicond, 2015, 36(9):094002 doi: 10.1088/1674-4926/36/9/094002
[11]
Sheridan D C, Niu G F, Merrett J N. Design and fabrication of planar guard ring termination for high-voltage SiC diodes. SolidState Electron, 2000, 44(8):1367 doi: 10.1016/S0038-1101(00)00081-2
[12]
Mahajan A, Skromme B J. Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes. Solid-State Electron, 2005, 49(6):945 doi: 10.1016/j.sse.2005.03.020
[13]
Chen S Z, Sheng K, Wang J. 1.4kV 4H-SiC PiN diode with a robust non-uniform floating guard ring termination. J Semicond, 2014, 35(5):054003 doi: 10.1088/1674-4926/35/5/054003
[14]
Pan J N, Cooper J A, Melloch M R. Activation of nitrogen implants in 6H-SiC. J Electron Mater, 1997, 26(3):208 doi: 10.1007/s11664-997-0152-2
[15]
Khemka V, Patel R, Ramungul N, et al. Characterization of phosphorus implantation in 4H-SiC. J Electron Mater, 1999, 28(3):167 doi: 10.1007/s11664-999-0008-z
[16]
Liu C J, Liu S, Feng J J, et al. Nickel ohmic contacts of highconcentration P-implanted 4H-SiC. J Semicond, 2012, 33(3):036002 doi: 10.1088/1674-4926/33/3/036002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3602 Times PDF downloads: 66 Times Cited by: 0 Times

    History

    Received: 25 April 2016 Revised: 18 September 2016 Online: Published: 01 February 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Juntao Li, Chengquan Xiao, Xingliang Xu, Gang Dai, Lin Zhang, Yang Zhou, An Xiang, Yingkun Yang, Jian Zhang. High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension[J]. Journal of Semiconductors, 2017, 38(2): 024003. doi: 10.1088/1674-4926/38/2/024003 J T Li, C Q Xiao, X L Xu, G Dai, L Zhang, Y Zhou, A Xiang, Y K Yang, J Zhang. High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension[J]. J. Semicond., 2017, 38(2): 024003. doi: 10.1088/1674-4926/38/2/024003.Export: BibTex EndNote
      Citation:
      Juntao Li, Chengquan Xiao, Xingliang Xu, Gang Dai, Lin Zhang, Yang Zhou, An Xiang, Yingkun Yang, Jian Zhang. High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension[J]. Journal of Semiconductors, 2017, 38(2): 024003. doi: 10.1088/1674-4926/38/2/024003

      J T Li, C Q Xiao, X L Xu, G Dai, L Zhang, Y Zhou, A Xiang, Y K Yang, J Zhang. High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension[J]. J. Semicond., 2017, 38(2): 024003. doi: 10.1088/1674-4926/38/2/024003.
      Export: BibTex EndNote

      High-voltage 4H-SiC PiN diodes with the etched implant junction termination extension

      doi: 10.1088/1674-4926/38/2/024003
      Funds:

      Project supported by the Science and Technology Development Foundation of China Academy of Engineering Physics (No. 2014A05011) and the Special Foundation of President of China Academy of Engineering Physics (No. 2014-1-100)

      the Science and Technology Development Foundation of China Academy of Engineering Physics 2014A05011

      the Special Foundation of President of China Academy of Engineering Physics 2014-1-100

      More Information
      • Corresponding author: Chengquan Xiao, Email:bbxcq119@163.com.cn
      • Received Date: 2016-04-25
      • Revised Date: 2016-09-18
      • Published Date: 2017-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return