SEMICONDUCTOR DEVICES

Theoretical investigation of some parameters into the behavior of quantum dot solar cells

A. Nasr1, 3, and A. Aly2, 3

+ Author Affiliations

 Corresponding author: A. Nasr, Email:Ashraf.nasr@gmail.com

PDF

Abstract: The main goal of this paper is to determine the accurate values of two parameters namely the surface generation-recombination rate and the average total number of electrons density generated in the i-region. These values will enhance the performance of quantum dot solar cells (QDSCs). In order to determine these values, this paper concentrates on the optical generation lifetime, the recombination lifetime, and the effective density state in QDs. Furthermore, these parameters are studied in relation with the average total number of electrons density. The values of the surface generation-recombination rate are found to be negative, which implies that the generation process is dominant in the absorption quantum dot region. Consequently, induced photocurrent density relation with device parameters is determined. The results ensure that QDSCs can have higher response photocurrent and then improve the power conversion efficiency. Moreover, the peak value of the average total number of electrons density is achieved at the UV range and is extended to the visible range, which is adequate for space and ground solar applications.

Key words: surface generation recombination ratequantum dotsolar cellsoptical generation and recombination lifetimesdot densitypower conversion efficiency



[1]
Tomiæ S. Intermediate-band solar cells:influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays. Phys Rev B, 2010, 82:195321 doi: 10.1103/PhysRevB.82.195321
[2]
Myong S Y. Recent progress in inorganic solar cells using quantum structure. Recent Patents on Nanotechnology, 2007, 1(1):67 doi: 10.2174/187221007779814763
[3]
Nault R M. Basic research needs for solar energy utilization: report on the basic energy sciences workshop on solar energy utilization. Argonne, Argonne National Laboratory USA, 2005
[4]
Nasr A, Aboshosha A, Al-Adl S M. Dark current characteristics of quantum wire infrared photodetectors. IET Proc Optoelectronic, 2007, 1(3):140 doi: 10.1049/iet-opt:20060089
[5]
Nasr A. Spectral responsivity of the quantum wire infrared photodetectors. J Opt Laser Technol, 2009, 41:345 doi: 10.1016/j.optlastec.2008.05.020
[6]
Nasr A, Mohamed S A E. Accurate distance estimation for VANET using nanointegrated devices. J Opt Photonics, 2012, 2(2):113 doi: 10.4236/opj.2012.22015
[7]
Nasr A, El_Mashade M B. Theoretical comparison between quantum-well and dot infrared photodetectors. IEE Proc Optoelectronic, 2006, 153(4):183 doi: 10.1049/ip-opt:20050029
[8]
Samadpour M, Giménez S, Boix P P, et al. Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. J Electrochimica Acta, 2012, 75:139 doi: 10.1016/j.electacta.2012.04.087
[9]
Bochorishvili B. Electronic states and oscillator strengths for interband transitions of a graded quantum dot quantum well structure. J Phys E, 2011, 43:874 doi: 10.1016/j.physe.2010.11.003
[10]
Nasr A. Detectivity performance of quantum wire infrared photodetectors. J Opt Commun, 2011, 32(2):101
[11]
Tomic S, Martı A, Antolı E, et al. On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells. Appl Phys Lett, 2011, 99:053504 doi: 10.1063/1.3621876
[12]
Tomiæ S. Radiative and non-radiative processes in intermediate band solar cells. IEEE 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2012:111
[13]
Wu S D, Tomic'S. Exciton states and oscillator strengths in a cylindrical quantum wire with finite potential under transverse electric field. J Appl Phys, 2012, 112:033715 doi: 10.1063/1.4745040
[14]
Tomiæ S, Vukmirovæ N. Excitonic and biexcitonic properties of single GaN quantum dots modeled by 8-band k·p theory and configuration-interaction method. Phys Rev B, 2009, 79:245330 doi: 10.1103/PhysRevB.79.245330
[15]
Jiang H, Singh J. Strain distribution and electronic spectra of InAs/GaAs self-assembled dots:an eight-band study. J Phys Rev B, 1997, 56:4696 doi: 10.1103/PhysRevB.56.4696
[16]
Nasr A. Performance of quantum wire infrared photodetectors under illumination conditions. Optics & Laser Technology, 2007, 41:871
[17]
Freundlich A, Alemu A, Bailey S. Quantum wire solar cell. IEEE Photovoltaic Specialists Conference, 2005:137
[18]
Marti A, Lopez N, Antolin E, et al. Novel semiconductor solar cell structures:the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511/512:638 doi: 10.1016/j.tsf.2005.12.122
[19]
Tao L, Xiong Y, Liu H, et al. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale, 2014, 6:931 doi: 10.1039/C3NR04461K
[20]
Aroutiounian V, Petrosyan S, Khachatryan A. Studies of the photocurrent in quantum dot solar cells by the application of a new theoretical model. J Solar Energy Materials & Solar Cells, 2005, 89:165
[21]
Lin A S. Modeling of solar cell efficiency improvement using optical gratings and intermediate. PhD Thesis, 2010: 54. http://deepblue.lib.umich.edu/bitstream/2027.42/75981/1/shihchun_1.pdf
[22]
Aroutiounian V, Petrosyan S, Khachatryan A. Quantum dot solar cells. J Appl Phys, 2001, 89(4):2268 doi: 10.1063/1.1339210
[23]
Tsai C Y, Tsai C Y. Effect of carrier escape and capture processes on quantum well solar cells:a theoretical investigation. IET Optoelectronic, 2009, 3(6):300 doi: 10.1049/iet-opt.2009.0027
[24]
Aroutiounian V M. Investigation in the field of solar cells at Yerevan state university. Armenian J Phys, 2009, 2(3):237
[25]
Nasr A. Theoretical study of the photocurrent performance into quantum dot solar cells. J Optics & Laser Technology, 2013, 48:135
[26]
Wang H, Wang L P. Perfect selective metamaterial solar absorbers. Opt Express, 2013, 21:A1078 doi: 10.1364/OE.21.0A1078
[27]
Lee Y J, Yao Y C, Tsai M T, et al. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. Opt Express, 2013, 21:A953 doi: 10.1364/OE.21.00A953
[28]
Nasr A. Infrared radiation photodetectors. Chapter 5. In: Infrared radiation. 2012: 95. ISBN: 979-953-307-349-0
[29]
Deng Q W, Wang X L, Yang C B, et al. Theoretical study on InxGa1-xN/GaN quantum dots solar cell. J Phys B, 2011, 406:73 doi: 10.1016/j.physb.2010.10.020
[30]
Gallagher S J, Norton B, Eames P C. Quantum dot solar concentrators:electrical conversion efficiencies and comparative concentrating factors of fabricated devices. J Solar Energy, 2007, 81:813 doi: 10.1016/j.solener.2006.09.011
[31]
Alguno A, Usami N, Ujihara T, et al. Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure. J Appl Phys Lett, 2003, 83(6):1258 doi: 10.1063/1.1600838
[32]
Aly A, Nasr A. Theoretical performance of solar cell based on minibands quantum dots. J Appl Phys, 2014, 115:114311 doi: 10.1063/1.4868982
[33]
Nasr A. Theoretical model for observation of the conversion efficiency into quantum dot solar cells. 2014, under publication
[34]
Djurisic A B, Ng A M C, Chen X Y. ZnO nanostructures for optoelectronics:Material properties and device applications. Progress in Quantum Electronics, 2010, 34:191 doi: 10.1016/j.pquantelec.2010.04.001
[35]
Aly A, Nasr A. Effect of multi-intermediate bands on the behavior of InAs1-xNx/GaAs1-ySby quantum dot solar cell. 2014, under publication
Fig. 1.  (a) Schematic view of the QDSCs structure. (b) Energy-band diagram of the QDs layers into the intrinsic region between high doped p$^+$-n$^+$ layers.

Fig. 2.  Average total Number of electrons density extracted from i-region at different values of $N_{\rm C}$ for one root at $T_{\rm R}$ $=$ 10$^{-8}$ s, $E_{\rm abs}$ $=$ 2.4 eV, $N_{\rm s}$ $=$ 10$^{12}$ cm$^{-2}$, $N_{\rm D}$ $=$ 10$^{16}$ cm$^{-3}$ for QDSCs.

Fig. 3.  Average total number of electrons density extracted from i-region at different values of $N_{\rm C}$ for another root at $T_{\rm R}$ $=$ 10$^{-8}$ s, $E_{\rm abs}$ $=$ 2.4 eV, $N_{\rm s}$ $=$ 10$^{12}$ cm$^{-2}$, $N_{\rm D}$ $=$ 10$^{16}$ cm$^{-3}$ for QDSCs.

Fig. 4.  Average total number of electrons density extracted from i-region at different values of $N_{\rm C}$ for another root at $T_{\rm R}$ $=$ 2.3 $\times$ 10$^{-8}$ s, $E_{\rm abs}$ $=$ 2.4 eV, $N_{\rm s}$ $=$ 10$^{12}$ cm$^{-2}$, $N_{\rm D}$ $=$ 10$^{16}$ cm$^{-3}$ for QDSCs.

Fig. 5.  Surface generation-recombination rate versus $T_{\rm opt}$ at different values of $N_{\rm C}$ when $T_{\rm R}$ $=$ 10$^{-8}$ s, $E_{\rm abs}$ $=$ 2.4 eV, $N_{\rm s}$ $=$ 10$^{12}$ cm$^{-2}$, $N_{\rm D}$ $=$ 10$^{16}$ cm$^{-3}$ for QDSCs.

Fig. 6.  Induced photocurrent density versus $T_{\rm opt}$ at different values of $N_{\rm C}$ when $T_{\rm R}$ $=$ 10$^{-8}$ s, $E_{\rm abs}$ $=$ 2.4 eV, $N_{\rm s}$ $=$ 10$^{12}$ cm$^{-2}$, $N_{\rm D}$ $=$ 10$^{16}$ cm$^{-3}$ for QDSCs.

Fig. 7.  (a) Total number of electrons as a function of wavelength at $T_{\rm R}$ $=$ 10$ ^{-8}$ s for one root used to calculate photocurrent response at $T_1$ $=$ 5760 K. (b) Average total number of electrons density as a function of wavelength when $T_{\rm R}$ $=$ 2.3 $\times$ 10$^{-8}$ s, for one root used to calculate photocurrent response at $T_1$ $=$ 5760 K. (c) Average total number of electrons density as a function of wavelength when $T_{\rm R}$ $=$ 2.3 $\times$ 10$^{-8}$ s for one root used to calculate photocurrent density at $T_1$ $=$ 2760 K.

Fig. 8.  (a) Photocurrent density versus $T_{\rm R}$ at different concentrations of $N_{\rm C}$ for $T_{\rm opt}$ $=$ 5 $\times$ 10$^{-4}$ s. (b) Photocurrent density versus $T_{\rm R}$ at different concentrations of $N_{\rm C}$ for $T_{\rm opt}$ $=$ 5 $\times$ 10$^{-6}$ s. (c) Photocurrent density versus $T_{\rm R}$ at different values of $N_{\rm C}$ for $T_{\rm opt}$ $=$ 5 $\times$ 10$^{-8}$ s.

Fig. 9.  Surface generation-recombination rate versus $T_{\rm opt}$ & $T_{\rm R}$ at different values of $N_{\rm C}$ for considered QDSCs.

Table 1.   Proposed theoretical model QDSCs parameters range composed from PIN solar detectors; GaAs or InGaAs QDs can be used to conjugate the regime.

[1]
Tomiæ S. Intermediate-band solar cells:influence of band formation on dynamical processes in InAs/GaAs quantum dot arrays. Phys Rev B, 2010, 82:195321 doi: 10.1103/PhysRevB.82.195321
[2]
Myong S Y. Recent progress in inorganic solar cells using quantum structure. Recent Patents on Nanotechnology, 2007, 1(1):67 doi: 10.2174/187221007779814763
[3]
Nault R M. Basic research needs for solar energy utilization: report on the basic energy sciences workshop on solar energy utilization. Argonne, Argonne National Laboratory USA, 2005
[4]
Nasr A, Aboshosha A, Al-Adl S M. Dark current characteristics of quantum wire infrared photodetectors. IET Proc Optoelectronic, 2007, 1(3):140 doi: 10.1049/iet-opt:20060089
[5]
Nasr A. Spectral responsivity of the quantum wire infrared photodetectors. J Opt Laser Technol, 2009, 41:345 doi: 10.1016/j.optlastec.2008.05.020
[6]
Nasr A, Mohamed S A E. Accurate distance estimation for VANET using nanointegrated devices. J Opt Photonics, 2012, 2(2):113 doi: 10.4236/opj.2012.22015
[7]
Nasr A, El_Mashade M B. Theoretical comparison between quantum-well and dot infrared photodetectors. IEE Proc Optoelectronic, 2006, 153(4):183 doi: 10.1049/ip-opt:20050029
[8]
Samadpour M, Giménez S, Boix P P, et al. Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells. J Electrochimica Acta, 2012, 75:139 doi: 10.1016/j.electacta.2012.04.087
[9]
Bochorishvili B. Electronic states and oscillator strengths for interband transitions of a graded quantum dot quantum well structure. J Phys E, 2011, 43:874 doi: 10.1016/j.physe.2010.11.003
[10]
Nasr A. Detectivity performance of quantum wire infrared photodetectors. J Opt Commun, 2011, 32(2):101
[11]
Tomic S, Martı A, Antolı E, et al. On inhibiting Auger intraband relaxation in InAs/GaAs quantum dot intermediate band solar cells. Appl Phys Lett, 2011, 99:053504 doi: 10.1063/1.3621876
[12]
Tomiæ S. Radiative and non-radiative processes in intermediate band solar cells. IEEE 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2012:111
[13]
Wu S D, Tomic'S. Exciton states and oscillator strengths in a cylindrical quantum wire with finite potential under transverse electric field. J Appl Phys, 2012, 112:033715 doi: 10.1063/1.4745040
[14]
Tomiæ S, Vukmirovæ N. Excitonic and biexcitonic properties of single GaN quantum dots modeled by 8-band k·p theory and configuration-interaction method. Phys Rev B, 2009, 79:245330 doi: 10.1103/PhysRevB.79.245330
[15]
Jiang H, Singh J. Strain distribution and electronic spectra of InAs/GaAs self-assembled dots:an eight-band study. J Phys Rev B, 1997, 56:4696 doi: 10.1103/PhysRevB.56.4696
[16]
Nasr A. Performance of quantum wire infrared photodetectors under illumination conditions. Optics & Laser Technology, 2007, 41:871
[17]
Freundlich A, Alemu A, Bailey S. Quantum wire solar cell. IEEE Photovoltaic Specialists Conference, 2005:137
[18]
Marti A, Lopez N, Antolin E, et al. Novel semiconductor solar cell structures:the quantum dot intermediate band solar cell. Thin Solid Films, 2006, 511/512:638 doi: 10.1016/j.tsf.2005.12.122
[19]
Tao L, Xiong Y, Liu H, et al. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Nanoscale, 2014, 6:931 doi: 10.1039/C3NR04461K
[20]
Aroutiounian V, Petrosyan S, Khachatryan A. Studies of the photocurrent in quantum dot solar cells by the application of a new theoretical model. J Solar Energy Materials & Solar Cells, 2005, 89:165
[21]
Lin A S. Modeling of solar cell efficiency improvement using optical gratings and intermediate. PhD Thesis, 2010: 54. http://deepblue.lib.umich.edu/bitstream/2027.42/75981/1/shihchun_1.pdf
[22]
Aroutiounian V, Petrosyan S, Khachatryan A. Quantum dot solar cells. J Appl Phys, 2001, 89(4):2268 doi: 10.1063/1.1339210
[23]
Tsai C Y, Tsai C Y. Effect of carrier escape and capture processes on quantum well solar cells:a theoretical investigation. IET Optoelectronic, 2009, 3(6):300 doi: 10.1049/iet-opt.2009.0027
[24]
Aroutiounian V M. Investigation in the field of solar cells at Yerevan state university. Armenian J Phys, 2009, 2(3):237
[25]
Nasr A. Theoretical study of the photocurrent performance into quantum dot solar cells. J Optics & Laser Technology, 2013, 48:135
[26]
Wang H, Wang L P. Perfect selective metamaterial solar absorbers. Opt Express, 2013, 21:A1078 doi: 10.1364/OE.21.0A1078
[27]
Lee Y J, Yao Y C, Tsai M T, et al. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. Opt Express, 2013, 21:A953 doi: 10.1364/OE.21.00A953
[28]
Nasr A. Infrared radiation photodetectors. Chapter 5. In: Infrared radiation. 2012: 95. ISBN: 979-953-307-349-0
[29]
Deng Q W, Wang X L, Yang C B, et al. Theoretical study on InxGa1-xN/GaN quantum dots solar cell. J Phys B, 2011, 406:73 doi: 10.1016/j.physb.2010.10.020
[30]
Gallagher S J, Norton B, Eames P C. Quantum dot solar concentrators:electrical conversion efficiencies and comparative concentrating factors of fabricated devices. J Solar Energy, 2007, 81:813 doi: 10.1016/j.solener.2006.09.011
[31]
Alguno A, Usami N, Ujihara T, et al. Enhanced quantum efficiency of solar cells with self-assembled Ge dots stacked in multilayer structure. J Appl Phys Lett, 2003, 83(6):1258 doi: 10.1063/1.1600838
[32]
Aly A, Nasr A. Theoretical performance of solar cell based on minibands quantum dots. J Appl Phys, 2014, 115:114311 doi: 10.1063/1.4868982
[33]
Nasr A. Theoretical model for observation of the conversion efficiency into quantum dot solar cells. 2014, under publication
[34]
Djurisic A B, Ng A M C, Chen X Y. ZnO nanostructures for optoelectronics:Material properties and device applications. Progress in Quantum Electronics, 2010, 34:191 doi: 10.1016/j.pquantelec.2010.04.001
[35]
Aly A, Nasr A. Effect of multi-intermediate bands on the behavior of InAs1-xNx/GaAs1-ySby quantum dot solar cell. 2014, under publication
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2380 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 22 March 2014 Revised: 12 July 2014 Online: Published: 01 December 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells[J]. Journal of Semiconductors, 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001 A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells[J]. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001.Export: BibTex EndNote
      Citation:
      A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells[J]. Journal of Semiconductors, 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001

      A. Nasr, A. Aly. Theoretical investigation of some parameters into the behavior of quantum dot solar cells[J]. J. Semicond., 2014, 35(12): 124001. doi: 10.1088/1674-4926/35/12/124001.
      Export: BibTex EndNote

      Theoretical investigation of some parameters into the behavior of quantum dot solar cells

      doi: 10.1088/1674-4926/35/12/124001
      More Information
      • Corresponding author: A. Nasr, Email:Ashraf.nasr@gmail.com
      • Received Date: 2014-03-22
      • Revised Date: 2014-07-12
      • Published Date: 2014-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return