SEMICONDUCTOR INTEGRATED CIRCUITS

A Ka-band wide locking range frequency divider with high injection sensitivity

Faen Liu, Zhigong Wang, Zhiqun Li, Qin Li, Lu Tang, Geliang Yang and Zhu Li

+ Author Affiliations

 Corresponding author: Liu Faen, Email:liufaenseu@gmail.com; Wang Zhigong, Email:zgwang@seu.edu.cn

PDF

Abstract: This paper proposes a direct injection-locked frequency divider (ILFD) with a wide locking range in the Ka-band. A complementary cross-coupled architecture is used to enhance the overdriving voltage of the switch transistor so that the divider locking range is extended efficiently. New insights into the locking range and output power are proposed. A new method to analyze and optimize the injection sensitivity is presented and a layout technique to reduce the parasitics of the cross-coupled transistors is applied to decrease the frequency shift and the locking range degradation. The circuit is designed in a standard 90-nm CMOS process. The total locking range of the ILFD is 43.8% at 34.5 GHz with an incident power of -3.5 dBm. The divider IC consumes 3.6 mW of power at the supply voltage of 1.2 V. The chip area including the pads is 0.5×0.5 mm2.

Key words: IC designCMOSKa-banddirect injection-locked frequency dividerILFD



[1]
Wang H M. A 1.8 V 3 mW 16.8 GHz frequency divider in 0.25μm CMOS. IEEE Int Sol Sta Circ Conf, 2000:196 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=839746
[2]
Zhou Chunyuan, Zhang Lei, Zhang Li, et al. Injection-locking-based power and speed optimization of CML dividers. Circuits and Systems Ⅱ:Express Briefs, 2011:2885 http://www.ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05985511
[3]
Mo Y, Skafidas E, Evans R J, et al. A 40 GHz power efficient static CML frequency divider in 0.13-μm CMOS technology for high speed millimeter-wave wireless systems. Circuits and Systems for Communications, 2008:812 doi: 10.1007/s10470-011-9673-y
[4]
Mo Y, Skafidas E, Evans R J, et al. Analysis and design of a 50-GHz 2:1 CMOS CML static frequency divider based on LC-tank. Microwave Integrated Circuit Conference, 2008:64 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4772229
[5]
Katz A, Degani O, Socher E. Modeling and design of a low-power injection-locked frequency divider in 90 nm CMOS for 60 GHz application. Silicon Monolithic Integrated Circuits in RF Systems, 2011:61 doi: 10.1007/s10470-015-0687-8
[6]
Seo H, Seo S, Jeon S, et al. A Q-band injection-locked frequency divider with inductive feedback for a locking range enhancement. Microwave and Wireless Components Letters, 2011:317 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=5770185&contentType=Journals+%26+Magazines
[7]
Chen Y T, Li M W, Huang T H, et al. A V-band CMOS direct injection-locked frequency divider using forward body bias technology. Microwave and Wireless Components Letters, 2010, 20:396 doi: 10.1109/LMWC.2010.2049436
[8]
Luo T N, Bai S Y, Chen Y J E. A 60-GHz 0.13-μm CMOS divide-by-three frequency divider. Microwave Theory and Techniques, 2008, 56:2409 doi: 10.1109/TMTT.2008.2004895
[9]
Cheema H M, Mahmoudi R, van Roermund A. A 30 to 44 GHz divide-by-2, quadrature, direct injection locked frequency divider for sliding-IF 60 GHz transceivers. Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010:57 http://www.narcis.nl/publication/RecordID/oai%3Alibrary.tue.nl%3A685156
[10]
Jang S L, Lee C F. A wide locking range LC-tank injection-locked frequency divider. Microwave and Wireless Components Letters, 2007:613 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4285670
[11]
Razavi B. A study of injection locking and pulling in oscillators. IEEE J Solid-State Circuits, 2004, 39(9):1415 doi: 10.1109/JSSC.2004.831608
[12]
Chi Baoyong, Yu Zhiping, Shi Bingxue. Analysis and design of CMOS RF integrated circuits. Beijing:Qsinghua University Press, 2006
[13]
Luo T N, Chen Y J E. A 0.8-mW 55-GHz dual-injection locked CMOS frequency divider. IEEE Trans Micro W Theory Tech, 2008, 56(3):620 doi: 10.1109/TMTT.2008.916868
[14]
Huang D, Diao S, Wei P, et al. A low-power 18-GHz dual-injection-locked frequency divider in 65-nm CMOS. Millimeter Waves (GSMM), 2012:278 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6314054
[15]
Wang H, Zhang L, Yang D, et al. A 60 GHz wideband injection-locked frequency divider with adaptive-phase-enhancing technique. Radio Frequency Integrated Circuits Symposium (RFIC), 2011:1 http://ieeexplore.ieee.org/document/5940605/keywords
[16]
Takatsu K, Tamura H, Yamamoto T, et al. A 60-GHz 1.65 mW 25.9% locking range multi-orderLC oscillator based injection locked frequencydivider in 65 nm CMOS. Custom Integrated Circuits Conference (CICC), 2010:1 https://es.scribd.com/document/135004777/Low-Voltage-CMOS-RF-Frequency-Synthesizers
Fig. 1.  (a) Circuit schematic of the proposed direct ILFD. (b) Circuit block diagram of the direct ILFD.

Fig. 2.  (a) Simplified model of the mixer for the locking range analysis. (b) Simplified current injection model.

Fig. 3.  Phasor diagram. (a) $\omega$ $>$ $\omega_{\rm o}$. (b) $\omega$ $<$ $\omega_{\rm o}$.

Fig. 4.  Magnitude and phase of the LC tank. (a) $\omega$ $>$ $\omega_{\rm o}$. (b) $\omega$ $<$ $\omega_{\rm o}$.

Fig. 5.  Simulated locking ranges and self-resonant output power of the direct ILFD with different bias voltages of the switch transistor MSW. The tuning voltage $V_{\rm tune}$ is 1.2 V.

Fig. 6.  Simulated locking output power of the direct ILFD with different bias voltage $V_{\rm B}$ and 0-dBm input power. The tuning voltage $V_{\rm tune}$ is 1.2 V.

Fig. 7.  Input characteristic curve of the switch transistor MSW.

Fig. 8.  (a) Unit cells of the proposed structure. (b) Layout of a complete cross coupled pair.

Fig. 9.  Chip photograph of the direct ILFD. It occupies an area of 500 $\times$ 500 $\mu $m$^{2}$.

Fig. 10.  Measured self-resonance spectrums of the direct ILFD corresponding to the tuning voltage of 1.2 V.

Fig. 11.  Measured output spectrum for 37 GHz input signal.

Fig. 12.  Measured input sensitivity curves with different tuning voltages (for $V_{\rm tune}$ $=$ 0, 0.6 and 1.2 V).

Fig. 13.  (a) Measured input sensitivity curves with DC bias voltage $V_{\rm B}$ varying from 0.9 to 1.1 V. (b) Measured output power curves with DC bias voltage $V_{\rm B}$ varying from 0.9 to 1.1 V and 0-dBm input power. The tuning voltage $V_{\rm tune}$ is 1.2 V.

Fig. 14.  Measured phase noise for 36-GHz input frequency. (a) Measured input phase noise. (b) Measured output phase noise.

Table 1.   Comparison of the performances for frequency divider.

[1]
Wang H M. A 1.8 V 3 mW 16.8 GHz frequency divider in 0.25μm CMOS. IEEE Int Sol Sta Circ Conf, 2000:196 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=839746
[2]
Zhou Chunyuan, Zhang Lei, Zhang Li, et al. Injection-locking-based power and speed optimization of CML dividers. Circuits and Systems Ⅱ:Express Briefs, 2011:2885 http://www.ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05985511
[3]
Mo Y, Skafidas E, Evans R J, et al. A 40 GHz power efficient static CML frequency divider in 0.13-μm CMOS technology for high speed millimeter-wave wireless systems. Circuits and Systems for Communications, 2008:812 doi: 10.1007/s10470-011-9673-y
[4]
Mo Y, Skafidas E, Evans R J, et al. Analysis and design of a 50-GHz 2:1 CMOS CML static frequency divider based on LC-tank. Microwave Integrated Circuit Conference, 2008:64 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4772229
[5]
Katz A, Degani O, Socher E. Modeling and design of a low-power injection-locked frequency divider in 90 nm CMOS for 60 GHz application. Silicon Monolithic Integrated Circuits in RF Systems, 2011:61 doi: 10.1007/s10470-015-0687-8
[6]
Seo H, Seo S, Jeon S, et al. A Q-band injection-locked frequency divider with inductive feedback for a locking range enhancement. Microwave and Wireless Components Letters, 2011:317 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=5770185&contentType=Journals+%26+Magazines
[7]
Chen Y T, Li M W, Huang T H, et al. A V-band CMOS direct injection-locked frequency divider using forward body bias technology. Microwave and Wireless Components Letters, 2010, 20:396 doi: 10.1109/LMWC.2010.2049436
[8]
Luo T N, Bai S Y, Chen Y J E. A 60-GHz 0.13-μm CMOS divide-by-three frequency divider. Microwave Theory and Techniques, 2008, 56:2409 doi: 10.1109/TMTT.2008.2004895
[9]
Cheema H M, Mahmoudi R, van Roermund A. A 30 to 44 GHz divide-by-2, quadrature, direct injection locked frequency divider for sliding-IF 60 GHz transceivers. Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010:57 http://www.narcis.nl/publication/RecordID/oai%3Alibrary.tue.nl%3A685156
[10]
Jang S L, Lee C F. A wide locking range LC-tank injection-locked frequency divider. Microwave and Wireless Components Letters, 2007:613 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4285670
[11]
Razavi B. A study of injection locking and pulling in oscillators. IEEE J Solid-State Circuits, 2004, 39(9):1415 doi: 10.1109/JSSC.2004.831608
[12]
Chi Baoyong, Yu Zhiping, Shi Bingxue. Analysis and design of CMOS RF integrated circuits. Beijing:Qsinghua University Press, 2006
[13]
Luo T N, Chen Y J E. A 0.8-mW 55-GHz dual-injection locked CMOS frequency divider. IEEE Trans Micro W Theory Tech, 2008, 56(3):620 doi: 10.1109/TMTT.2008.916868
[14]
Huang D, Diao S, Wei P, et al. A low-power 18-GHz dual-injection-locked frequency divider in 65-nm CMOS. Millimeter Waves (GSMM), 2012:278 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6314054
[15]
Wang H, Zhang L, Yang D, et al. A 60 GHz wideband injection-locked frequency divider with adaptive-phase-enhancing technique. Radio Frequency Integrated Circuits Symposium (RFIC), 2011:1 http://ieeexplore.ieee.org/document/5940605/keywords
[16]
Takatsu K, Tamura H, Yamamoto T, et al. A 60-GHz 1.65 mW 25.9% locking range multi-orderLC oscillator based injection locked frequencydivider in 65 nm CMOS. Custom Integrated Circuits Conference (CICC), 2010:1 https://es.scribd.com/document/135004777/Low-Voltage-CMOS-RF-Frequency-Synthesizers
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2350 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 06 July 2013 Revised: 04 November 2013 Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Faen Liu, Zhigong Wang, Zhiqun Li, Qin Li, Lu Tang, Geliang Yang, Zhu Li. A Ka-band wide locking range frequency divider with high injection sensitivity[J]. Journal of Semiconductors, 2014, 35(3): 035002. doi: 10.1088/1674-4926/35/3/035002 F E Liu, Z G Wang, Z Q Li, Q Li, L Tang, G L Yang, Z Li. A Ka-band wide locking range frequency divider with high injection sensitivity[J]. J. Semicond., 2014, 35(3): 035002. doi: 10.1088/1674-4926/35/3/035002.Export: BibTex EndNote
      Citation:
      Faen Liu, Zhigong Wang, Zhiqun Li, Qin Li, Lu Tang, Geliang Yang, Zhu Li. A Ka-band wide locking range frequency divider with high injection sensitivity[J]. Journal of Semiconductors, 2014, 35(3): 035002. doi: 10.1088/1674-4926/35/3/035002

      F E Liu, Z G Wang, Z Q Li, Q Li, L Tang, G L Yang, Z Li. A Ka-band wide locking range frequency divider with high injection sensitivity[J]. J. Semicond., 2014, 35(3): 035002. doi: 10.1088/1674-4926/35/3/035002.
      Export: BibTex EndNote

      A Ka-band wide locking range frequency divider with high injection sensitivity

      doi: 10.1088/1674-4926/35/3/035002
      Funds:

      the National Natural Science Foundation of China 61106024

      the National High Technology Research and Development Program of China 2011AA10305

      the International Cooperation Projects in Science and Technology 2011DFA11310

      the National Natural Science Foundation of China 60901012

      Project supported by the National Basic Research Program (No. 2010CB327404), the National High Technology Research and Development Program of China (No. 2011AA10305), the International Cooperation Projects in Science and Technology (No. 2011DFA11310), and the National Natural Science Foundation of China (Nos. 60901012, 61106024)

      the National Basic Research Program 2010CB327404

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return