SEMICONDUCTOR DEVICES

A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application

Hao Zheng1, 2, Zhangming Zhu1, and Rui Ma1

+ Author Affiliations

 Corresponding author: Zhangming Zhu, Email: zmyh@263.net

PDF

Abstract: This paper presents a fully integrated CMOS filterless class D amplifier that can directly hook up lithium battery in mobile application The proposed amplifier embodies a 2-order feedback path architecture instead of direct feedback of output to input of the integrator to decrease the high frequency intermodulation distortion associated with direct feedback and eliminate the integrator input common mode disturbance from the output in ternary modulation. The prototype class D amplifier realized in 0.35μm digital technology achieves a THD+N of 0.02% when delivering 400 mW to an 8Ω load from VDD=3.6 V. The PSRR of the prototype class D amplifier is 80 dB at 217 Hz. Furthermore a filterless method that can eliminate the external LC filter is employed which offers great advantages of saving PCB space and lowering system cost. In addition the prototype class D amplifier can operate in large voltage range with VDD range from 2.5 to 4.2 V in mobile application. The total area of the amplifier is 1.7 mm2.

Key words: class D amplifierfilterlessTHDfeedback loopPWM



[1]
Berkhout M, Dooper L. Class-D audio amplifiers in mobile applications. IEEE J Trans Circuits Syst I, 2010, 57(5): 992 doi: 10.1109/TCSI.2010.2046200
[2]
Choi Y, Tak W, Yoon Y, et al. A 0.018% THD+N, 88dB PSRR PWM class-D amplifier for direct battery hookup. IEEE J Solid-State Circuits, 2012, 47(2): 454 doi: 10.1109/JSSC.2011.2170770
[3]
Zhu Z, Liu L, Yang Y, et al. A high efficiency PWM CMOS class-D audio power amplifier. J Semicond, 2009, 30(2): 48
[4]
Cellier R, Nagari A, Souha H, et al. A synchronized self oscillating class-D amplifier for mobile application. Pro ESSCIRC, 2012: 422
[5]
Teplechuk M, Gribben T, Amadi C. Filterless integrated class-D audio amplifier achieving 0. 0012% THD+N and 96dB PSRR when supplying 1. 2 W. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011: 240
[6]
Forejt B. A 700+-mW class d design with direct battery hookup in a 90-nm process. IEEE J Solid-State Circuits, 2005, 40(9): 1880 doi: 10.1109/JSSC.2005.848147
[7]
Guo L, Ge T, Chang J S. A 101 dB PSRR, 0.0027% THD + N and 94% power-efficiency filterless class D amplifier. IEEE J Solid-State Circuits, 2014, 49(11): 2608 doi: 10.1109/JSSC.2014.2359913
[8]
Kwon S, Kim I, Yi S, et al. A 0.028% THD + N, 91% power-efficiency, 3-level PWM class-D amplifier with a true differential front-end. IEEEISSCC Dig Tech Papers, 2012: 96
[9]
[10]
Jiang X, Song J, Cheung D, et al. Integrated class-D audio amplifier with 95% efficiency and 105 dB SNR. IEEE J Solid-State Circuits, 2014, 49(11): 2387 doi: 10.1109/JSSC.2014.2335713
[11]
Jiang X, Song J, Wang M, et al. Integrated pop-click noise suppression, EMI reduction, and short-circuit detection for class-D audio amplifiers. IEEE J Solid-State Circuits, 2013, 48(4): 1099 doi: 10.1109/JSSC.2013.2238999
[12]
Karki J. Fully differential amplifiers. Texas Instrum Analog Appl J, 2000, 8: 38
[13]
Leach W M Jr. Introduction to electro acoustics and audio amplifier design. 2nd ed. Kendall/Hunt, 2001
[14]
Monticelli D M. A quad CMOS single-supply op amp with rail-to-rail output swing. IEEE J Solid-State Circuits, 1986, 21(6): 1026 doi: 10.1109/JSSC.1986.1052645
[15]
Razavi B. Design of analog CMOS integrated circuits. McGraw-Hill, 2001
[16]
SLOA068-Guidelines for measuring audio power amplifier performance, Texas Instruments, 2001
[17]
Kinyua M, Wang R, Soenen E. Integrated 105 dB SNR, 0.0031% THD+N class-D audio amplifier with global feedback and digital control in 55 nm CMOS. IEEE J Solid-State Circuits, 2015, 50(8): 1 doi: 10.1109/JSSC.2015.2458811
Fig. 1.  The structure of power management in the mobile phone application.

Fig. 2.  Conventional closed-loop architecture class D amplifier.

Fig. 3.  The linear model of a conventional closed loop class D amplifier.

Fig. 4.  The linear model of the proposed class D amplifier.

Fig. 5.  Architecture of the proposed class D amplifier.

Fig. 6.  Gain and phase of signal transfer function.

Fig. 7.  Detailed circuits of the fully differential amplifier, FDA1, FDA2, FDA3.

Fig. 8.  Simulated frequency response of the FDA.

Fig. 9.  Circuits of rail-to-rail comparator.

Fig. 10.  Circuits of carrier generator. (a) Schematic of carrier generator. (b) Bias current generator.

Fig. 11.  Chip photograph of the proposed stereo class D amplifier.

Fig. 12.  THD+N versus output power into an 8 Ω load at 3.0, 3.6 and 4.2 V supply.

Fig. 13.  THD+N versus frequency.

Fig. 14.  PSRR versus frequency swept from 20 to 20 000 Hz.

Fig. 15.  AC-coupled transfer function of the proposed class-D amplifier.

Fig. 16.  Efficiency versus output power in 3.6 V supply and an 8 Ω load.

Table 1.   Circuit parameter in Fig. 5.

DownLoad: CSV

Table 2.   Simulation results of fully differential amplifier.

DownLoad: CSV

Table 3.   Performance comparisons of recently published class D amplifier for mobile application.

DownLoad: CSV
[1]
Berkhout M, Dooper L. Class-D audio amplifiers in mobile applications. IEEE J Trans Circuits Syst I, 2010, 57(5): 992 doi: 10.1109/TCSI.2010.2046200
[2]
Choi Y, Tak W, Yoon Y, et al. A 0.018% THD+N, 88dB PSRR PWM class-D amplifier for direct battery hookup. IEEE J Solid-State Circuits, 2012, 47(2): 454 doi: 10.1109/JSSC.2011.2170770
[3]
Zhu Z, Liu L, Yang Y, et al. A high efficiency PWM CMOS class-D audio power amplifier. J Semicond, 2009, 30(2): 48
[4]
Cellier R, Nagari A, Souha H, et al. A synchronized self oscillating class-D amplifier for mobile application. Pro ESSCIRC, 2012: 422
[5]
Teplechuk M, Gribben T, Amadi C. Filterless integrated class-D audio amplifier achieving 0. 0012% THD+N and 96dB PSRR when supplying 1. 2 W. IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011: 240
[6]
Forejt B. A 700+-mW class d design with direct battery hookup in a 90-nm process. IEEE J Solid-State Circuits, 2005, 40(9): 1880 doi: 10.1109/JSSC.2005.848147
[7]
Guo L, Ge T, Chang J S. A 101 dB PSRR, 0.0027% THD + N and 94% power-efficiency filterless class D amplifier. IEEE J Solid-State Circuits, 2014, 49(11): 2608 doi: 10.1109/JSSC.2014.2359913
[8]
Kwon S, Kim I, Yi S, et al. A 0.028% THD + N, 91% power-efficiency, 3-level PWM class-D amplifier with a true differential front-end. IEEEISSCC Dig Tech Papers, 2012: 96
[9]
[10]
Jiang X, Song J, Cheung D, et al. Integrated class-D audio amplifier with 95% efficiency and 105 dB SNR. IEEE J Solid-State Circuits, 2014, 49(11): 2387 doi: 10.1109/JSSC.2014.2335713
[11]
Jiang X, Song J, Wang M, et al. Integrated pop-click noise suppression, EMI reduction, and short-circuit detection for class-D audio amplifiers. IEEE J Solid-State Circuits, 2013, 48(4): 1099 doi: 10.1109/JSSC.2013.2238999
[12]
Karki J. Fully differential amplifiers. Texas Instrum Analog Appl J, 2000, 8: 38
[13]
Leach W M Jr. Introduction to electro acoustics and audio amplifier design. 2nd ed. Kendall/Hunt, 2001
[14]
Monticelli D M. A quad CMOS single-supply op amp with rail-to-rail output swing. IEEE J Solid-State Circuits, 1986, 21(6): 1026 doi: 10.1109/JSSC.1986.1052645
[15]
Razavi B. Design of analog CMOS integrated circuits. McGraw-Hill, 2001
[16]
SLOA068-Guidelines for measuring audio power amplifier performance, Texas Instruments, 2001
[17]
Kinyua M, Wang R, Soenen E. Integrated 105 dB SNR, 0.0031% THD+N class-D audio amplifier with global feedback and digital control in 55 nm CMOS. IEEE J Solid-State Circuits, 2015, 50(8): 1 doi: 10.1109/JSSC.2015.2458811
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3856 Times PDF downloads: 50 Times Cited by: 0 Times

    History

    Received: 08 September 2016 Revised: 23 December 2016 Online: Published: 01 July 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hao Zheng, Zhangming Zhu, Rui Ma. A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application[J]. Journal of Semiconductors, 2017, 38(7): 074002. doi: 10.1088/1674-4926/38/7/074002 H Zheng, Z M Zhu, R Ma. A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application[J]. J. Semicond., 2017, 38(7): 074002. doi: 10.1088/1674-4926/38/7/074002.Export: BibTex EndNote
      Citation:
      Hao Zheng, Zhangming Zhu, Rui Ma. A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application[J]. Journal of Semiconductors, 2017, 38(7): 074002. doi: 10.1088/1674-4926/38/7/074002

      H Zheng, Z M Zhu, R Ma. A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application[J]. J. Semicond., 2017, 38(7): 074002. doi: 10.1088/1674-4926/38/7/074002.
      Export: BibTex EndNote

      A 0.02% THD and 80 dB PSRR filterless class D amplifier with direct lithium battery hookup in mobile application

      doi: 10.1088/1674-4926/38/7/074002
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61234002, 61322405, 61306044)

      Project supported by the National Natural Science Foundation of China 61234002

      Project supported by the National Natural Science Foundation of China 61322405

      Project supported by the National Natural Science Foundation of China 61306044

      More Information
      • Corresponding author: Zhangming Zhu, Email: zmyh@263.net
      • Received Date: 2016-09-08
      • Revised Date: 2016-12-23
      • Published Date: 2017-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return