SEMICONDUCTOR DEVICES

Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells

Yu Cao, Jianjun Zhang, Tianwei Li, Zhenhua Huang, Jun Ma, Xu Yang, Jian Ni, Xinhua Geng and Ying Zhao

+ Author Affiliations

 Corresponding author: Zhang Jianjun, Email:jjzhang@nankai.edu.cn

PDF

Abstract: Using plasma enhanced chemical vapor deposition (PECVD) at 13.56 MHz, a seed layer is fabricated at the initial growth stage of the hydrogenated microcrystalline silicon germanium (μc-Si1-xGex:H) i-layer. The effects of seeding processes on the growth of μc-Si1-xGex:H i-layers and the performance of μc-Si1-xGex:H p-i-n single junction solar cells are investigated. By applying this seeding method, the μc-Si1-xGex:H solar cell shows a significant improvement in short circuit current density (Jsc) and fill factor (FF) with an acceptable performance of blue response as a μc-Si:H solar cell even when the Ge content x increases up to 0.3. Finally, an improved efficiency of 7.05% is achieved for the μc-Si0.7Ge0.3:H solar cell.

Key words: hydrogenated microcrystalline silicon germaniumseed layerincubation layersolar cell



[1]
Shah A, Torres P, Tscharner R, et al. Photovoltaic technology:the case for thin-film solar cells. Science, 1999, 285:692 doi: 10.1126/science.285.5428.692
[2]
Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell. Appl Phys Lett, 2011, 99(11):113512 doi: 10.1063/1.3638068
[3]
Deng Q W, Wang X L, Xiao H L, et al. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μ c-Si solar cell. Journal of Semiconductors, 2010, 31(10):103003 doi: 10.1088/1674-4926/31/10/103003
[4]
Nawaz M, Ahmad A. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. Journal of Semiconductors, 2007, 33(4):042001 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=11100201&flag=1
[5]
Ganguly G, Ikeda T, Nishimiya T, et al. Hydrogenated microcrystalline silicon germanium:a bottom cell material for amorphous silicon-based tandem solar cells. Appl Phys Lett, 1996, 69(27):4224 doi: 10.1063/1.116993
[6]
Zhang J J, Hu Z X, Gu S B, et al. Hydrogenation of polycrystalline SiGe thin film by hot wire technique. Journal of Semiconductors, 2007, 28(3):317 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=06082304&flag=1
[7]
Zhang L P, Zhang J J, Shang Z R, et al. Influence of reaction gas flows on the properties of SiGe:H thin film prepared by plasma assisted reactive thermal chemical vapour deposition. Chinese Physics B, 2008, 17(9):3448 doi: 10.1088/1674-1056/17/9/051
[8]
Miyazaki S, Takahashi H, Yamashita H, et al. Growth and characterization of microcrystalline silicon-germanium films. Journal of Non-Crystalline Solids, 2002, 299-302:148 http://www.sciencedirect.com/science/article/pii/S0022309301009486
[9]
Rath J K, Tichelaar F D, Schropp R E I. Heterogeneous growth of microcrystalline silicon germanium. Solar Energy Materials & Solar Cells, 2002, 74(1-4):553 http://www.sciencedirect.com/science/article/pii/S0927024802000764?via%3Dihub
[10]
Matsui T, Chang C W, Takada T, et al. Thin film solar cells based on microcrystalline silicon-germanium narrow-gap absorbers. Solar Energy Materials & Solar Cells, 2009, 93(6/7):1100 http://www.sciencedirect.com/science/article/pii/S0927024808004923?via%3Dihub
[11]
Chang C W, Matsui T, Kondo M. Electron spin resonance study of hydrogenated microcrystalline silicon-germanium alloy thin films. Journal of Non-Crystalline Solids, 2008, 354(19-25):2365 doi: 10.1016/j.jnoncrysol.2007.09.022
[12]
Filonovich S A, Àguas1 H, Busani T, et al. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3. Science and Technology of Advanced Materials, 2012, 13(4):045004 doi: 10.1088/1468-6996/13/4/045004
[13]
Li Y M, Li L, Selvan J A A, et al. Effects of seeding methods on the fabrication of microcrystalline silicon solar cells using radio frequency plasma enhanced chemical vapor deposition. Thin Solid Films, 2005, 483(1/2):84 https://www.researchgate.net/publication/222555580_Effects_of_seeding_methods_on_the_fabrication_of_microcrystalline_silicon_solar_cells_using_radio_frequency_plasma_enhanced_chemical_vapor_deposition
[14]
Yue G, Yan B, Teplin C, et al. Optimization and characterization of i/p buffer layer in hydrogenated nanocrystalline silicon solar cells. Journal of Non-Crystalline Solids, 2008, 354(19-25):2440 doi: 10.1016/j.jnoncrysol.2007.09.037
[15]
Zhang H, Zhang X, Wei C, et al. Microstructure characterization of microcrystalline silicon thin films deposited by very high frequency plasma-enhanced chemical vapor deposition by spectroscopic ellipsometry. Thin Solid Films, 2011, 520(2):861 doi: 10.1016/j.tsf.2011.04.166
[16]
Houben L, Luysberg M, Hapke P, et al. Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philosophical Magazine A, 1998, 77(6):1447 doi: 10.1080/01418619808214262
[17]
Merten J, Voz C, Munoz A, et al. The role of the buffer layer in the light of a new equivalent circuit for amorphous silicon solar cells. Solar Energy Materials & Solar Cells, 1999, 57(2):153 http://www.sciencedirect.com/science/article/pii/S092702489800169X
[18]
Tsuo Y S, Xu Y, Ramsay E A, et al. Methods of improving glow-discharge-deposited a-Si1-xGex:H. Materials Research Society Symposium Proceedings, 1991, 219:769 doi: 10.1557/PROC-219-769
[19]
Liu F Z, Cui J D, Zhang Q F, et al. Dark I-V characteristics and carrier transport mechanism in nano-crystalline Silicon thin film/crystalline silicon hetero-junction solar cells. Journal of Semiconductors, 2008, 29(3):549(in Chinese) http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=07062203&flag=1
[20]
Cleef M W M, Schropp R E I, Rubinelli F A. Significance of tunneling in p+ amorphous silicon carbide n crystalline silicon heterojunction solar cells. Appl Phys Lett, 1998, 73(18):2609 doi: 10.1063/1.122521
[21]
Sai H, Fujiwara H, Kondo M. Back surface re?ectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. Solar Energy Materials & Solar Cells, 2009, 93(6/7):1087
[22]
Das R, Jana T, Ray S. Degradation studies of transparent conducting oxide:a substrate for microcrystalline silicon thin film solar cells. Solar Energy Materials & Solar Cells, 2005, 86(2):207 http://www.sciencedirect.com/science/article/pii/S0927024804002879
[23]
Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Solar Energy, 2004, 77(6):917 doi: 10.1016/j.solener.2004.03.015
Fig. 1.  Gas flows of the H$_{2}$, SiH$_{4}$ and GeH$_{4}$ in chamber during i-layer deposition.

Fig. 2.  Raman spectra of the seed layers with different SC$_{\rm seed}$ and a $\mu$c-Si$_{0.9}$Ge$_{0.1}$:H layer with (S$+$G) C$_{\rm intrinsic}$ $=$ 2.5%.

Fig. 3.  Raman spectra of the $\mu$c-Si$_{0.9}$Ge$_{0.1}$:H solar cells with different seed layers.

Fig. 4.  Performance of the $\mu$c-Si$_{0.9}$Ge$_{0.1}$:H solar cells with different seed layers. (a) $J$-$V$ curves. (b) QE spectra.

Fig. 5.  QE dependence of $\mu $c-Si$_{1-x}$Ge$_{x}$:H solar cells with and without a seed layer.

Fig. 6.  Performance of the $\mu$c-Si$_{0.7}$Ge$_{0.3}$:H solar cells with different TCO layers. (a) $J$-$V$ curves. (b) QE spectra.

Table 1.   Detailed performance of the $\mu$c-Si$_{0.9}$Ge$_{0.1}$:H solar cells with different seed layers.

[1]
Shah A, Torres P, Tscharner R, et al. Photovoltaic technology:the case for thin-film solar cells. Science, 1999, 285:692 doi: 10.1126/science.285.5428.692
[2]
Yan B, Yue G, Sivec L, et al. Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell. Appl Phys Lett, 2011, 99(11):113512 doi: 10.1063/1.3638068
[3]
Deng Q W, Wang X L, Xiao H L, et al. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μ c-Si solar cell. Journal of Semiconductors, 2010, 31(10):103003 doi: 10.1088/1674-4926/31/10/103003
[4]
Nawaz M, Ahmad A. Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells. Journal of Semiconductors, 2007, 33(4):042001 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=11100201&flag=1
[5]
Ganguly G, Ikeda T, Nishimiya T, et al. Hydrogenated microcrystalline silicon germanium:a bottom cell material for amorphous silicon-based tandem solar cells. Appl Phys Lett, 1996, 69(27):4224 doi: 10.1063/1.116993
[6]
Zhang J J, Hu Z X, Gu S B, et al. Hydrogenation of polycrystalline SiGe thin film by hot wire technique. Journal of Semiconductors, 2007, 28(3):317 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=06082304&flag=1
[7]
Zhang L P, Zhang J J, Shang Z R, et al. Influence of reaction gas flows on the properties of SiGe:H thin film prepared by plasma assisted reactive thermal chemical vapour deposition. Chinese Physics B, 2008, 17(9):3448 doi: 10.1088/1674-1056/17/9/051
[8]
Miyazaki S, Takahashi H, Yamashita H, et al. Growth and characterization of microcrystalline silicon-germanium films. Journal of Non-Crystalline Solids, 2002, 299-302:148 http://www.sciencedirect.com/science/article/pii/S0022309301009486
[9]
Rath J K, Tichelaar F D, Schropp R E I. Heterogeneous growth of microcrystalline silicon germanium. Solar Energy Materials & Solar Cells, 2002, 74(1-4):553 http://www.sciencedirect.com/science/article/pii/S0927024802000764?via%3Dihub
[10]
Matsui T, Chang C W, Takada T, et al. Thin film solar cells based on microcrystalline silicon-germanium narrow-gap absorbers. Solar Energy Materials & Solar Cells, 2009, 93(6/7):1100 http://www.sciencedirect.com/science/article/pii/S0927024808004923?via%3Dihub
[11]
Chang C W, Matsui T, Kondo M. Electron spin resonance study of hydrogenated microcrystalline silicon-germanium alloy thin films. Journal of Non-Crystalline Solids, 2008, 354(19-25):2365 doi: 10.1016/j.jnoncrysol.2007.09.022
[12]
Filonovich S A, Àguas1 H, Busani T, et al. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3. Science and Technology of Advanced Materials, 2012, 13(4):045004 doi: 10.1088/1468-6996/13/4/045004
[13]
Li Y M, Li L, Selvan J A A, et al. Effects of seeding methods on the fabrication of microcrystalline silicon solar cells using radio frequency plasma enhanced chemical vapor deposition. Thin Solid Films, 2005, 483(1/2):84 https://www.researchgate.net/publication/222555580_Effects_of_seeding_methods_on_the_fabrication_of_microcrystalline_silicon_solar_cells_using_radio_frequency_plasma_enhanced_chemical_vapor_deposition
[14]
Yue G, Yan B, Teplin C, et al. Optimization and characterization of i/p buffer layer in hydrogenated nanocrystalline silicon solar cells. Journal of Non-Crystalline Solids, 2008, 354(19-25):2440 doi: 10.1016/j.jnoncrysol.2007.09.037
[15]
Zhang H, Zhang X, Wei C, et al. Microstructure characterization of microcrystalline silicon thin films deposited by very high frequency plasma-enhanced chemical vapor deposition by spectroscopic ellipsometry. Thin Solid Films, 2011, 520(2):861 doi: 10.1016/j.tsf.2011.04.166
[16]
Houben L, Luysberg M, Hapke P, et al. Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philosophical Magazine A, 1998, 77(6):1447 doi: 10.1080/01418619808214262
[17]
Merten J, Voz C, Munoz A, et al. The role of the buffer layer in the light of a new equivalent circuit for amorphous silicon solar cells. Solar Energy Materials & Solar Cells, 1999, 57(2):153 http://www.sciencedirect.com/science/article/pii/S092702489800169X
[18]
Tsuo Y S, Xu Y, Ramsay E A, et al. Methods of improving glow-discharge-deposited a-Si1-xGex:H. Materials Research Society Symposium Proceedings, 1991, 219:769 doi: 10.1557/PROC-219-769
[19]
Liu F Z, Cui J D, Zhang Q F, et al. Dark I-V characteristics and carrier transport mechanism in nano-crystalline Silicon thin film/crystalline silicon hetero-junction solar cells. Journal of Semiconductors, 2008, 29(3):549(in Chinese) http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=07062203&flag=1
[20]
Cleef M W M, Schropp R E I, Rubinelli F A. Significance of tunneling in p+ amorphous silicon carbide n crystalline silicon heterojunction solar cells. Appl Phys Lett, 1998, 73(18):2609 doi: 10.1063/1.122521
[21]
Sai H, Fujiwara H, Kondo M. Back surface re?ectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. Solar Energy Materials & Solar Cells, 2009, 93(6/7):1087
[22]
Das R, Jana T, Ray S. Degradation studies of transparent conducting oxide:a substrate for microcrystalline silicon thin film solar cells. Solar Energy Materials & Solar Cells, 2005, 86(2):207 http://www.sciencedirect.com/science/article/pii/S0927024804002879
[23]
Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells. Solar Energy, 2004, 77(6):917 doi: 10.1016/j.solener.2004.03.015
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1990 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 12 September 2012 Revised: 19 November 2012 Online: Published: 01 March 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yu Cao, Jianjun Zhang, Tianwei Li, Zhenhua Huang, Jun Ma, Xu Yang, Jian Ni, Xinhua Geng, Ying Zhao. Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells[J]. Journal of Semiconductors, 2013, 34(3): 034008. doi: 10.1088/1674-4926/34/3/034008 Y Cao, J J Zhang, T W Li, Z H Huang, J Ma, X Yang, J Ni, X H Geng, Y Zhao. Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells[J]. J. Semicond., 2013, 34(3): 034008. doi: 10.1088/1674-4926/34/3/034008.Export: BibTex EndNote
      Citation:
      Yu Cao, Jianjun Zhang, Tianwei Li, Zhenhua Huang, Jun Ma, Xu Yang, Jian Ni, Xinhua Geng, Ying Zhao. Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells[J]. Journal of Semiconductors, 2013, 34(3): 034008. doi: 10.1088/1674-4926/34/3/034008

      Y Cao, J J Zhang, T W Li, Z H Huang, J Ma, X Yang, J Ni, X H Geng, Y Zhao. Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells[J]. J. Semicond., 2013, 34(3): 034008. doi: 10.1088/1674-4926/34/3/034008.
      Export: BibTex EndNote

      Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells

      doi: 10.1088/1674-4926/34/3/034008
      Funds:

      Project supported by the National Basic Research Program of China (Nos. 2011CBA00705, 2011CBA00706, 2011CBA00707), the Natural Science Foundation of Tianjin (No. 12JCQNJC01000), and the Fundamental Research Funds for the Central Universities

      the Natural Science Foundation of Tianjin 12JCQNJC01000

      the National Basic Research Program of China 2011CBA00707

      the National Basic Research Program of China 2011CBA00706

      the National Basic Research Program of China 2011CBA00705

      the Fundamental Research Funds for the Central Universities 

      More Information
      • Corresponding author: Zhang Jianjun, Email:jjzhang@nankai.edu.cn
      • Received Date: 2012-09-12
      • Revised Date: 2012-11-19
      • Published Date: 2013-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return