ARTICLES

Design and analysis of a NMOS triggered LIGBT structure for electrostatic discharge protection

Li Tian, Jianbing Cheng, Cairong Zhang, Li Shen and Lei Wang

+ Author Affiliations

 Corresponding author: Li Tian, 664138841@qq.com

PDF

Turn off MathJax

Abstract: A novel NMOS triggered LIGBT (NTLIGBT) structure is proposed for electrostatic discharge (ESD) protection in this paper. The structure utilizes internal NMOS to trigger SCR-like structure in LIGBT. The trigger voltage is significantly reduced because the embedded NMOS causes N+-drain/P-body junction being apt to avalanche breakdown. At the same time, the new parasitic PNP transistor including the newly added P+-region as a collector forms another path to bleed ESD current and then the conductivity modulation in the LIGBT is weakened. As a result, the holding voltage is increased. So, the proposed NTLIGBT structure has a narrow ESD design window. The simulation results show an improvement of 71.5% in trigger voltage and over 50% in holding voltage comparing with the conventional LIGBT structure.

Key words: ESDNMOS triggered LIGBT (NTLIGBT)trigger voltageholding voltageESD design window



[1]
Schaller R. Moore's law: past, present, and future. IEEE Spectrum, 1997, 34(6), 52 doi: 10.1109/6.591665
[2]
Vigna B. More than Moore: micro-machined products enable new applications and open new markets. International Electron Devices Meeting, 2005, 1
[3]
Cheng J B, Chen S S, Tian L. A new SCR-LDMOSFET embedded p- region for electrostatic discharge protection. IEEE International Power Electronics and Application Conference and Exposition, 2018, 1
[4]
Qian Q, Sun W, Wei S, et al. The investigation of electrothermal characteristics of high-voltage lateral IGBT for ESD protection. IEEE Trans Device Mater Reliab, 2012, 12(1), 146 doi: 10.1109/TDMR.2011.2178072
[5]
Arbess H, Tremouilles D, Bafleur M. High-temperature operation MOS-IGBT power clamp for improved ESD protection in smart power SOI technology. Electrical Overstress electrostatic Discharge Symposium, 2011, 1
[6]
Wu J, Dong S, Han Y, et al. Lateral IGBT in thin SOI process for high voltage ESD application. IEEE International Conference on Electron Devices and Solid-State Circuit, 2012, 1
[7]
Jiang L, Fan H, Qiao M, et al. ESD characterization of a 190 V LIGBT SOI ESD power clamp structure for plasma display panel applications. Microelectron Reliab, 2013, 53(5), 687 doi: 10.1016/j.microrel.2013.02.002
[8]
Qian Q, Liu S, Sun W, et al. A robust W-shape-buffer LIGBT device with large current capability. IEEE Trans Power Electron, 2014, 29(9), 4466 doi: 10.1109/TPEL.2014.2299822
[9]
Zeng J, Dong S, Liou J J, et al. Design and analysis of an area-efficient high holding voltage ESD protection device. IEEE Trans Electron Devices, 2015, 62(2), 606 doi: 10.1109/TED.2014.2381511
[10]
Ye R, Liu S, Sun W, et al. ESD robustness concern for SOI-LIGBTs with typical latch-up immunity structures. Solid State Electron, 2017, 137, 6 doi: 10.1016/j.sse.2017.07.010
[11]
Ye R, Liu S, Tian Y, et al. Influence of latch-up immunity structure on ESD robustness of SOI-LIGBT used as output device. IEEE Trans Device Mater Reliab, 2018, 18, 284 doi: 10.1109/TDMR.2018.2829550
Fig. 1.  Cross-sectional view of (a) conventional LIGBT structure, (b) NTLIGBT structure.

Fig. 2.  (Color online) IV curves of LIGBT under ESD stress.

Fig. 3.  (Color online) Comparison of voltage and time under ESD stress.

Fig. 4.  The relationship between the time and the temperature with different ESD currents.

Fig. 5.  (Color online) Current distribution after the novel NTLIGBT is fully turned on.

Fig. 6.  (Color online) IV curve of LIGBT structure with different P+ locations.

Fig. 7.  (Color online) The variation of the $ {V_{{\rm{t}}1}}$ and the $ {V_{{\rm{h}}}}$ with different gate lengths.

Fig. 8.  (Color online) The variation of the $ {V_{\rm{t1}}}$ and the $ {V_{\rm{h}}}$ with different concentration of the N-buffer layer.

[1]
Schaller R. Moore's law: past, present, and future. IEEE Spectrum, 1997, 34(6), 52 doi: 10.1109/6.591665
[2]
Vigna B. More than Moore: micro-machined products enable new applications and open new markets. International Electron Devices Meeting, 2005, 1
[3]
Cheng J B, Chen S S, Tian L. A new SCR-LDMOSFET embedded p- region for electrostatic discharge protection. IEEE International Power Electronics and Application Conference and Exposition, 2018, 1
[4]
Qian Q, Sun W, Wei S, et al. The investigation of electrothermal characteristics of high-voltage lateral IGBT for ESD protection. IEEE Trans Device Mater Reliab, 2012, 12(1), 146 doi: 10.1109/TDMR.2011.2178072
[5]
Arbess H, Tremouilles D, Bafleur M. High-temperature operation MOS-IGBT power clamp for improved ESD protection in smart power SOI technology. Electrical Overstress electrostatic Discharge Symposium, 2011, 1
[6]
Wu J, Dong S, Han Y, et al. Lateral IGBT in thin SOI process for high voltage ESD application. IEEE International Conference on Electron Devices and Solid-State Circuit, 2012, 1
[7]
Jiang L, Fan H, Qiao M, et al. ESD characterization of a 190 V LIGBT SOI ESD power clamp structure for plasma display panel applications. Microelectron Reliab, 2013, 53(5), 687 doi: 10.1016/j.microrel.2013.02.002
[8]
Qian Q, Liu S, Sun W, et al. A robust W-shape-buffer LIGBT device with large current capability. IEEE Trans Power Electron, 2014, 29(9), 4466 doi: 10.1109/TPEL.2014.2299822
[9]
Zeng J, Dong S, Liou J J, et al. Design and analysis of an area-efficient high holding voltage ESD protection device. IEEE Trans Electron Devices, 2015, 62(2), 606 doi: 10.1109/TED.2014.2381511
[10]
Ye R, Liu S, Sun W, et al. ESD robustness concern for SOI-LIGBTs with typical latch-up immunity structures. Solid State Electron, 2017, 137, 6 doi: 10.1016/j.sse.2017.07.010
[11]
Ye R, Liu S, Tian Y, et al. Influence of latch-up immunity structure on ESD robustness of SOI-LIGBT used as output device. IEEE Trans Device Mater Reliab, 2018, 18, 284 doi: 10.1109/TDMR.2018.2829550
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3361 Times PDF downloads: 43 Times Cited by: 0 Times

    History

    Received: 04 January 2019 Revised: 24 March 2019 Online: Accepted Manuscript: 09 April 2019Uncorrected proof: 11 April 2019Published: 08 May 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Li Tian, Jianbing Cheng, Cairong Zhang, Li Shen, Lei Wang. Design and analysis of a NMOS triggered LIGBT structure for electrostatic discharge protection[J]. Journal of Semiconductors, 2019, 40(5): 052402. doi: 10.1088/1674-4926/40/5/052402 L Tian, J B Cheng, C R Zhang, L Shen, L Wang, Design and analysis of a NMOS triggered LIGBT structure for electrostatic discharge protection[J]. J. Semicond., 2019, 40(5): 052402. doi: 10.1088/1674-4926/40/5/052402.Export: BibTex EndNote
      Citation:
      Li Tian, Jianbing Cheng, Cairong Zhang, Li Shen, Lei Wang. Design and analysis of a NMOS triggered LIGBT structure for electrostatic discharge protection[J]. Journal of Semiconductors, 2019, 40(5): 052402. doi: 10.1088/1674-4926/40/5/052402

      L Tian, J B Cheng, C R Zhang, L Shen, L Wang, Design and analysis of a NMOS triggered LIGBT structure for electrostatic discharge protection[J]. J. Semicond., 2019, 40(5): 052402. doi: 10.1088/1674-4926/40/5/052402.
      Export: BibTex EndNote

      Design and analysis of a NMOS triggered LIGBT structure for electrostatic discharge protection

      doi: 10.1088/1674-4926/40/5/052402
      More Information
      • Corresponding author: 664138841@qq.com
      • Received Date: 2019-01-04
      • Revised Date: 2019-03-24
      • Published Date: 2019-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return