SEMICONDUCTOR MATERIALS

Optimal migration route of Cu in HfO2

Jinlong Lu1, Jing Luo1, Hongpeng Zhao1, Jin Yang1, Xianwei Jiang1, Qi Liu2, Xiaofeng Li3 and Yuehua Dai1,

+ Author Affiliations

 Corresponding author: Dai Yuehua, Email:daiyuehua2013@163.com

PDF

Abstract: The movement of Cu in a HfO2-based resistive random access memory (RRAM) device is investigated in depth by first-principle calculations. Thermodynamics analysis shows that the dominant motion of Cu tends to be along the[001] orientation with a faster speed. The migration barriers along different routes are compared and reveal that the[001] orientation is the optimal migration route of Cu in HfO2, which is more favorable for Cu transportation. Furthermore, the preferable HfO2 growth orientation along[100], corresponding to Cu migration along[001], is also observed. Therefore, it is proposed that the HfO2 material should grow along[100] and the operating voltage should be applied along[001], which will contribute to the improvement of the response speed and the reduction of power consumption of RRAM.

Key words: HfO2RRAMCu migrationlattice orientationmigration speed



[1]
Zhuang W W, Pan W, Ulrich B D, et al. Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). IEDM Tech Dig, 2002:193
[2]
Baek I G, Lee M S, Seo S, et al. Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Tech Dig, 2004:578
[3]
Lee D, Choi H, Sim H, et al. Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. IEEE Electron Device Lett, 2005, 26(10):719 doi: 10.1109/LED.2005.854397
[4]
Lin C Y, Wu C Y, Wu C Y, et al. Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Electron Device Lett, 2007, 28(5):366 doi: 10.1109/LED.2007.894652
[5]
Guan W H, Long S B, Liu Qi, et al. Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett, 2008, 29(5):434 doi: 10.1109/LED.2008.919602
[6]
Liu Qi, Long Shibing, Lv Hangbing, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4(10):6162 doi: 10.1021/nn1017582
[7]
Wang Yan, Liu Qi, Lü Hangbing, et al. Improving the electrical performance of resistive switching memory using doping technology. Chinese Science Bulletin, 2012, 57(11):1235 doi: 10.1007/s11434-011-4930-0
[8]
Yang Yuchao, Pan Feng, Liu Qi, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 9(4):1636 doi: 10.1021/nl900006g
[9]
Wang Yan, Liu Qi, Long Shibing, et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010, 21(4):045202 doi: 10.1088/0957-4484/21/4/045202
[10]
Lv Hangbing, Wan Haijun, Tang Tingao. Improvement of resistive switching uniformity by introducing a thin GST interface layer. IEEE Electron Device Lett, 2010, 31(9):978 doi: 10.1109/LED.2010.2055534
[11]
Wang Zhongrui, Zhu W G, Du A Y, et al. Highly uniform, self-compliance, and forming-free ALD HfO2-based RRAM with Ge doping. IEEE Trans Electron Devices, 2012, 59(4):1203 doi: 10.1109/TED.2012.2182770
[12]
Gao B, Zhang H W, Yu S, et al. Oxide-based RRAM:uniformity improvement using a new material-oriented methodology. VLSI Technology, 2009:30
[13]
Umezawa N, Sato M, Shiraishi K. Reduction in charged defects associated with oxygen vacancies in Hafnia by magnesium incorporation:first-principles study. Appl Phys Lett, 2008, 93(22):223104 doi: 10.1063/1.3040306
[14]
Kasai H, Aspera S M, Kishi H, et al. First principles study on the switching mechanism in resistance random access memory devices. Simulation of Semiconductor Processes and Devices, 2011:211
[15]
Zhao Qiang, Zhou Maoxiu, Zhang Wei, et al. Effects of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study. Journal of Semiconductors, 2013, 34(3):032001 doi: 10.1088/1674-4926/34/3/032001
[16]
Zhang Wei, Hou Z F. Interaction and electronic structures of oxygen divacancy in HfO2. Physica Status Solidi B, 2012, 250(2):352
[17]
Li Yingtao, Long Shibing, Zhang Manhong, et al. Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvoatile memory applications. IEEE Electron Device Lett, 2010, 31(2):117 doi: 10.1109/LED.2009.2036276
[18]
Segall M D, Lindan P J D, Probert M J, et al. First principles simulation:ideas, illustrations and the CASTEP code. J Phys Condens Matter, 2002, 14:2717 doi: 10.1088/0953-8984/14/11/301
[19]
Gu T, Tomofumi T, Satoshi W. Conductive path formation in the Ta2O5 atomic switch:first-principles analyses. ACS Nano, 2010, 4(11):6477 doi: 10.1021/nn101410s
[20]
Hann R E, Suitc P R, Penteco J L. Monoclinic crystal structures of ZrO2 and HfO2 refined from X-ray powder diffraction. Data J Am Ceram Soc, 1985, 68(10):285
[21]
Shuichi N. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 1984, 52(2):255 doi: 10.1080/00268978400101201
[22]
Baron P, Liang W, Bell A T. Biasing a transition state search to locate multiple reaction pathways. J Chem Phys, 2003, 118(21):9533 doi: 10.1063/1.1569906
[23]
Khan M S, Islam M S. Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor. J Mater Chem B, 1998, 102(17):3099
[24]
Julian R T, Saiful I M, Slater P R. Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26. J Mater Chem, 2003, 13:1956 doi: 10.1039/b302748c
[25]
Sakib K M, Saiful I M, Bates D R. Cation doping and oxygen diffusion in zirconia:a combined atomistic simulation and molecular dynamics study. J Mater Chem, 1998, 8:2299 doi: 10.1039/a803917h
[26]
Saiful M I. Ionic transport in ABO3 perovskite oxides:a computer modelling tour. J Mater Chem, 2000, 10:1027 doi: 10.1039/a908425h
Fig. 1.  The black balls are O atoms, small gray balls are Cu atoms and the rest are Hf atoms. (a) A supercell (2 × 2 × 2) model of HfO2 containing 104 atoms with one Cu in every unit cell. (b) Different migration paths were labeled: Path A ([100] orientation); Path B ([010] orientation); Path C ([001] orientation).

Fig. 2.  The thermal-motion position coordinates of Cu after sufficient relaxation of the structure. A cluster stands for the thermal-motion position coordinates of one Cu.

Fig. 3.  The projective positions of the Cu (circled in Fig. 2) in three crystal planes. $\Delta X$, $\Delta Y$ and $\Delta Z$ are the effective motion distance of the Cu along the [100], [010], and [001] orientations, respectively.

Fig. 4.  The distribution probabilities of the projective distance of Cu every step (1 fs) along the three orientations. The horizontal ordinates of the $a$, $b$ and $c$ points correspond to the main distance along the [100], [010] and [001] orientations, respectively.

Fig. 5.  (a) The sketch map of migration energy along the three paths with respect to the energy of the initial structure. Black forks stand for either the highest or the lowest value of energy. (b) The barrier sites of Cu along the three paths. The black balls are O atoms, the gray balls are Hf atoms and the rest are Cu atoms. The 1, 2 and 3 sites are the initial sites, the barrier sites (small gray balls) and the final sites of Cu, respectively.

Fig. 6.  The migration barriers of Cu along [001] under different growth orientations of HfO2 crystal. "312" stands for a supercell (3 × 1 × 2) model.

Fig. 7.  The sketch map of the optimal RRAM structure model based on the Cu-doped HfO2. It is proposed that HfO2 material should grow along [100] and the operating voltage should be applied along [001] on HfO2 material because of the optimal migration route of Cu.

[1]
Zhuang W W, Pan W, Ulrich B D, et al. Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). IEDM Tech Dig, 2002:193
[2]
Baek I G, Lee M S, Seo S, et al. Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Tech Dig, 2004:578
[3]
Lee D, Choi H, Sim H, et al. Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. IEEE Electron Device Lett, 2005, 26(10):719 doi: 10.1109/LED.2005.854397
[4]
Lin C Y, Wu C Y, Wu C Y, et al. Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Electron Device Lett, 2007, 28(5):366 doi: 10.1109/LED.2007.894652
[5]
Guan W H, Long S B, Liu Qi, et al. Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett, 2008, 29(5):434 doi: 10.1109/LED.2008.919602
[6]
Liu Qi, Long Shibing, Lv Hangbing, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4(10):6162 doi: 10.1021/nn1017582
[7]
Wang Yan, Liu Qi, Lü Hangbing, et al. Improving the electrical performance of resistive switching memory using doping technology. Chinese Science Bulletin, 2012, 57(11):1235 doi: 10.1007/s11434-011-4930-0
[8]
Yang Yuchao, Pan Feng, Liu Qi, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 9(4):1636 doi: 10.1021/nl900006g
[9]
Wang Yan, Liu Qi, Long Shibing, et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010, 21(4):045202 doi: 10.1088/0957-4484/21/4/045202
[10]
Lv Hangbing, Wan Haijun, Tang Tingao. Improvement of resistive switching uniformity by introducing a thin GST interface layer. IEEE Electron Device Lett, 2010, 31(9):978 doi: 10.1109/LED.2010.2055534
[11]
Wang Zhongrui, Zhu W G, Du A Y, et al. Highly uniform, self-compliance, and forming-free ALD HfO2-based RRAM with Ge doping. IEEE Trans Electron Devices, 2012, 59(4):1203 doi: 10.1109/TED.2012.2182770
[12]
Gao B, Zhang H W, Yu S, et al. Oxide-based RRAM:uniformity improvement using a new material-oriented methodology. VLSI Technology, 2009:30
[13]
Umezawa N, Sato M, Shiraishi K. Reduction in charged defects associated with oxygen vacancies in Hafnia by magnesium incorporation:first-principles study. Appl Phys Lett, 2008, 93(22):223104 doi: 10.1063/1.3040306
[14]
Kasai H, Aspera S M, Kishi H, et al. First principles study on the switching mechanism in resistance random access memory devices. Simulation of Semiconductor Processes and Devices, 2011:211
[15]
Zhao Qiang, Zhou Maoxiu, Zhang Wei, et al. Effects of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study. Journal of Semiconductors, 2013, 34(3):032001 doi: 10.1088/1674-4926/34/3/032001
[16]
Zhang Wei, Hou Z F. Interaction and electronic structures of oxygen divacancy in HfO2. Physica Status Solidi B, 2012, 250(2):352
[17]
Li Yingtao, Long Shibing, Zhang Manhong, et al. Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvoatile memory applications. IEEE Electron Device Lett, 2010, 31(2):117 doi: 10.1109/LED.2009.2036276
[18]
Segall M D, Lindan P J D, Probert M J, et al. First principles simulation:ideas, illustrations and the CASTEP code. J Phys Condens Matter, 2002, 14:2717 doi: 10.1088/0953-8984/14/11/301
[19]
Gu T, Tomofumi T, Satoshi W. Conductive path formation in the Ta2O5 atomic switch:first-principles analyses. ACS Nano, 2010, 4(11):6477 doi: 10.1021/nn101410s
[20]
Hann R E, Suitc P R, Penteco J L. Monoclinic crystal structures of ZrO2 and HfO2 refined from X-ray powder diffraction. Data J Am Ceram Soc, 1985, 68(10):285
[21]
Shuichi N. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 1984, 52(2):255 doi: 10.1080/00268978400101201
[22]
Baron P, Liang W, Bell A T. Biasing a transition state search to locate multiple reaction pathways. J Chem Phys, 2003, 118(21):9533 doi: 10.1063/1.1569906
[23]
Khan M S, Islam M S. Dopant substitution and ion migration in the LaGaO3-based oxygen ion conductor. J Mater Chem B, 1998, 102(17):3099
[24]
Julian R T, Saiful I M, Slater P R. Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26. J Mater Chem, 2003, 13:1956 doi: 10.1039/b302748c
[25]
Sakib K M, Saiful I M, Bates D R. Cation doping and oxygen diffusion in zirconia:a combined atomistic simulation and molecular dynamics study. J Mater Chem, 1998, 8:2299 doi: 10.1039/a803917h
[26]
Saiful M I. Ionic transport in ABO3 perovskite oxides:a computer modelling tour. J Mater Chem, 2000, 10:1027 doi: 10.1039/a908425h
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2807 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 24 June 2013 Revised: 27 August 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jinlong Lu, Jing Luo, Hongpeng Zhao, Jin Yang, Xianwei Jiang, Qi Liu, Xiaofeng Li, Yuehua Dai. Optimal migration route of Cu in HfO2[J]. Journal of Semiconductors, 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001 J L Lu, J Luo, H P Zhao, J Yang, X W Jiang, Q Liu, X F Li, Y H Dai. Optimal migration route of Cu in HfO2[J]. J. Semicond., 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001.Export: BibTex EndNote
      Citation:
      Jinlong Lu, Jing Luo, Hongpeng Zhao, Jin Yang, Xianwei Jiang, Qi Liu, Xiaofeng Li, Yuehua Dai. Optimal migration route of Cu in HfO2[J]. Journal of Semiconductors, 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001

      J L Lu, J Luo, H P Zhao, J Yang, X W Jiang, Q Liu, X F Li, Y H Dai. Optimal migration route of Cu in HfO2[J]. J. Semicond., 2014, 35(1): 013001. doi: 10.1088/1674-4926/35/1/013001.
      Export: BibTex EndNote

      Optimal migration route of Cu in HfO2

      doi: 10.1088/1674-4926/35/1/013001
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 61376106)

      the National Natural Science Foundation of China 61376106

      More Information
      • Corresponding author: Dai Yuehua, Email:daiyuehua2013@163.com
      • Received Date: 2013-06-24
      • Revised Date: 2013-08-27
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return