SEMICONDUCTOR INTEGRATED CIRCUITS

A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology

Jincan Zhang1, 2, Yuming Zhang1, Hongliang Lü1, , Yimen Zhang1, Guangxing Xiao1 and Guiping Ye1

+ Author Affiliations

 Corresponding author: Lü Hongliang, Email:hllv@mail.xidian.edu.cn

PDF

Abstract: The design and test results of a 6-bit 3-Gsps analog-to-digital converter (ADC) using 1 μm GaAs heterojunction bipolar transistor (HBT) technology are presented. The monolithic folding-interpolating ADC makes use of a track-and-hold amplifier (THA) with a highly linear input buffer to maintain a highly effective number of bits (ENOB). The ADC occupies an area of 4.32×3.66 mm2 and achieves 5.53 ENOB with an effective resolution bandwidth of 1.1 GHz at a sampling rate of 3 Gsps. The maximum DNL and INL are 0.36 LSB and 0.48 LSB, respectively.

Key words: analog-to-digital converterGaAs HBTfoldinginterpolating



[1]
Payne R, Sestok C, Bright W, et al. A 12 b 1 GS/s SiGe BiCMOS two-way time-interleaved pipeline ADC. IEEE International Solid-State Circuits Conference, 2011:182 doi: 10.1007/978-3-319-17680-2_4
[2]
Chu M, Jacob P, Kim J W, et al. A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology. IEEE J Solid-State Circuits, 2010, 45(2):380 doi: 10.1109/JSSC.2009.2039375
[3]
Vessal F, Salama C A T. An 8-bit 2-Gsample/s folding-interpolating analog-to-digital converter in SiGe technology. IEEE J Solid-State Circuits, 2004, 39(1):238 doi: 10.1109/JSSC.2003.820867
[4]
Lee J, Weiner J, Chen Y K. A 20-GS/s 5-b SiGe ADC for 40-Gb/s coherent optical links. IEEE Trans Circuits Syst I:Regular Papers, 2010, 57(10):2665 doi: 10.1109/TCSI.2010.2048678
[5]
Zhao Yi, Wang Shenjie, Qin Yajie, et al. A sub-sampling 4-bit 1.056-GS/s flash ADC with a novel track and hold amplifier for an IR-UWB receiver. Journal of Semiconductors, 2011, 32(7):075001 doi: 10.1088/1674-4926/32/7/075001
[6]
Zhang Youtao, Li Xiaopeng, Zhang Min, et al. A 2-GS/s 6-bit self-calibrated flash ADC. Journal of Semiconductors, 2010, 31(9):095013 doi: 10.1088/1674-4926/31/9/095013
[7]
Jiang T, Liu W, Zhong F Y, et al. A single-channel, 1.25-GS/s, 6-bit, 6.08-mW asynchronous successive-approximation ADC with improved feedback delay in 40-nm CMOS. IEEE J Solid-State Circuits, 2012, 47(10):2444 doi: 10.1109/JSSC.2012.2204543
[8]
Varzaghani A, Kasapi A, Loizos D N, et al. A 10.3-GS/s, 6-Bit flash ADC for 10G ethernet applications. IEEE J Solid-State Circuits, 2013, 48(12):1 doi: 10.1109/JSSC.2013.2292111
[9]
Kim J I, Sung B R S, Kim W, et al. A 6-b 4.1-GS/s flash ADC with time-domain latch interpolation in 90-nm CMOS. IEEE J Solid-State Circuits, 2013, 48(6):1429 doi: 10.1109/JSSC.2013.2252516
[10]
Chan B, Oyama B, Monier C, et al. An ultra-wideband 7-Bit 5-Gsps ADC implemented in submicron InP HBT technology. IEEE J Solid-State Circuits, 2008, 43(10):2187 doi: 10.1109/JSSC.2008.2002932
[11]
Kraus S, Kallfass I, Makon R E, et al. A 10-GS/s multibit delta-sigma analog-to-digital converter in an InP HBT technology. IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2011:1 http://ieeexplore.ieee.org/document/6105929/
[12]
Nosaka H, Nakamura M, Ida M, et al. A 24-Gsps 3-bit nyquist ADC using InP HBTs for electronic dispersion compensation. IEEE MTT-S Int Microwave Symp Dig, 2004:101 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1335812
[13]
Guo Z, Amore M D, Gutierrez A. A 2-Bit 20 Gsps InP HBT A/D converter for optical communications. IEEE CSIC Dig, 2004:93 doi: 10.1109/CSICS.2004.1392500
[14]
Wu Danyu, Zhou Lei, Guo Jiannan, et al. A 4 GS/S 4 bit ADC with 3.8 analog bandwidth in GaAs HBT technology. Journal of Semiconductors, 2011, 32(6):065007 doi: 10.1088/1674-4926/32/6/065007
[15]
Yamanaka S, Sano K, Murata K. A 20-Gs/s track-and-hold amplifier in InP HBT technology. IEEE Trans Microw Theory Tech, 2010, 58(9):2334 doi: 10.1109/TMTT.2010.2057174
[16]
Karanicolas A N. A 2.7-V 300-MS/s track-and-hold amplifier. IEEE J Solid-State Circuits, 1997, 32(12):1961 doi: 10.1109/4.643654
[17]
Shahramian S, Voinigescu S P, Carusone A C. A 35-GS/s, 4-bit flash ADC with active data and clock distribution trees. IEEE J Solid-State Circuits, 2009, 44(6):1709 doi: 10.1109/JSSC.2009.2020657
[18]
Kobayashi H, Tobari T, Matsuura H, et al. System architecture and key components of a multi-giga-hertz A/D convert with HBT. IEEE Instrumentation and Measurement Technology Conference, 1996:1160 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=507554
Fig. 1.  Block diagram of the folding-interpolating ADC

Fig. 2.  Track-and-hold amplifier

Fig. 3.  Highly linear input buffer

Fig. 4.  Folding amplifier

Fig. 5.  Transfer function of the folding-interpolating circuits

Fig. 6.  Master-slave comparator

Fig. 7.  Chip microphotograph of the ADC-DEMUX chain

Fig. 8.  Photograph of the ADC evaluation board

Fig. 9.  Block diagram of the ADC test setup

Fig. 10.  Measured DNL and INL of the ADC at 3 Gsps

Fig. 11.  Measured output spectrum for an input frequency of 95.21 MHz at 3 Gsps

Fig. 12.  Measured SNDR and SFDR versus analog input frequency at 3 Gsps

Table 1.   Summary of 6-bit ADC characteristics

Table 2.   Comparison of high-speed ADCs

[1]
Payne R, Sestok C, Bright W, et al. A 12 b 1 GS/s SiGe BiCMOS two-way time-interleaved pipeline ADC. IEEE International Solid-State Circuits Conference, 2011:182 doi: 10.1007/978-3-319-17680-2_4
[2]
Chu M, Jacob P, Kim J W, et al. A 40 Gs/s time interleaved ADC using SiGe BiCMOS technology. IEEE J Solid-State Circuits, 2010, 45(2):380 doi: 10.1109/JSSC.2009.2039375
[3]
Vessal F, Salama C A T. An 8-bit 2-Gsample/s folding-interpolating analog-to-digital converter in SiGe technology. IEEE J Solid-State Circuits, 2004, 39(1):238 doi: 10.1109/JSSC.2003.820867
[4]
Lee J, Weiner J, Chen Y K. A 20-GS/s 5-b SiGe ADC for 40-Gb/s coherent optical links. IEEE Trans Circuits Syst I:Regular Papers, 2010, 57(10):2665 doi: 10.1109/TCSI.2010.2048678
[5]
Zhao Yi, Wang Shenjie, Qin Yajie, et al. A sub-sampling 4-bit 1.056-GS/s flash ADC with a novel track and hold amplifier for an IR-UWB receiver. Journal of Semiconductors, 2011, 32(7):075001 doi: 10.1088/1674-4926/32/7/075001
[6]
Zhang Youtao, Li Xiaopeng, Zhang Min, et al. A 2-GS/s 6-bit self-calibrated flash ADC. Journal of Semiconductors, 2010, 31(9):095013 doi: 10.1088/1674-4926/31/9/095013
[7]
Jiang T, Liu W, Zhong F Y, et al. A single-channel, 1.25-GS/s, 6-bit, 6.08-mW asynchronous successive-approximation ADC with improved feedback delay in 40-nm CMOS. IEEE J Solid-State Circuits, 2012, 47(10):2444 doi: 10.1109/JSSC.2012.2204543
[8]
Varzaghani A, Kasapi A, Loizos D N, et al. A 10.3-GS/s, 6-Bit flash ADC for 10G ethernet applications. IEEE J Solid-State Circuits, 2013, 48(12):1 doi: 10.1109/JSSC.2013.2292111
[9]
Kim J I, Sung B R S, Kim W, et al. A 6-b 4.1-GS/s flash ADC with time-domain latch interpolation in 90-nm CMOS. IEEE J Solid-State Circuits, 2013, 48(6):1429 doi: 10.1109/JSSC.2013.2252516
[10]
Chan B, Oyama B, Monier C, et al. An ultra-wideband 7-Bit 5-Gsps ADC implemented in submicron InP HBT technology. IEEE J Solid-State Circuits, 2008, 43(10):2187 doi: 10.1109/JSSC.2008.2002932
[11]
Kraus S, Kallfass I, Makon R E, et al. A 10-GS/s multibit delta-sigma analog-to-digital converter in an InP HBT technology. IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2011:1 http://ieeexplore.ieee.org/document/6105929/
[12]
Nosaka H, Nakamura M, Ida M, et al. A 24-Gsps 3-bit nyquist ADC using InP HBTs for electronic dispersion compensation. IEEE MTT-S Int Microwave Symp Dig, 2004:101 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1335812
[13]
Guo Z, Amore M D, Gutierrez A. A 2-Bit 20 Gsps InP HBT A/D converter for optical communications. IEEE CSIC Dig, 2004:93 doi: 10.1109/CSICS.2004.1392500
[14]
Wu Danyu, Zhou Lei, Guo Jiannan, et al. A 4 GS/S 4 bit ADC with 3.8 analog bandwidth in GaAs HBT technology. Journal of Semiconductors, 2011, 32(6):065007 doi: 10.1088/1674-4926/32/6/065007
[15]
Yamanaka S, Sano K, Murata K. A 20-Gs/s track-and-hold amplifier in InP HBT technology. IEEE Trans Microw Theory Tech, 2010, 58(9):2334 doi: 10.1109/TMTT.2010.2057174
[16]
Karanicolas A N. A 2.7-V 300-MS/s track-and-hold amplifier. IEEE J Solid-State Circuits, 1997, 32(12):1961 doi: 10.1109/4.643654
[17]
Shahramian S, Voinigescu S P, Carusone A C. A 35-GS/s, 4-bit flash ADC with active data and clock distribution trees. IEEE J Solid-State Circuits, 2009, 44(6):1709 doi: 10.1109/JSSC.2009.2020657
[18]
Kobayashi H, Tobari T, Matsuura H, et al. System architecture and key components of a multi-giga-hertz A/D convert with HBT. IEEE Instrumentation and Measurement Technology Conference, 1996:1160 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=507554
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2311 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 13 January 2014 Revised: 28 February 2014 Online: Published: 01 August 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Guangxing Xiao, Guiping Ye. A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology[J]. Journal of Semiconductors, 2014, 35(8): 085005. doi: 10.1088/1674-4926/35/8/085005 J C Zhang, Y M Zhang, H Lü, Y M Zhang, G X Xiao, G P Ye. A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology[J]. J. Semicond., 2014, 35(8): 085005. doi: 10.1088/1674-4926/35/8/085005.Export: BibTex EndNote
      Citation:
      Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Guangxing Xiao, Guiping Ye. A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology[J]. Journal of Semiconductors, 2014, 35(8): 085005. doi: 10.1088/1674-4926/35/8/085005

      J C Zhang, Y M Zhang, H Lü, Y M Zhang, G X Xiao, G P Ye. A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology[J]. J. Semicond., 2014, 35(8): 085005. doi: 10.1088/1674-4926/35/8/085005.
      Export: BibTex EndNote

      A 6-bit 3-Gsps ADC implemented in 1 μm GaAs HBT technology

      doi: 10.1088/1674-4926/35/8/085005
      Funds:

      the Advance Research Foundation of China 9140A08xxxx11DZ111

      Project supported by the National Basic Research Program of China (No. 2010CB327505), the Advance Research Project of China (No. 51308xxxx06), and the Advance Research Foundation of China (No. 9140A08xxxx11DZ111)

      the National Basic Research Program of China 2010CB327505

      the Advance Research Project of China 51308xxxx06

      More Information
      • Corresponding author: Lü Hongliang, Email:hllv@mail.xidian.edu.cn
      • Received Date: 2014-01-13
      • Revised Date: 2014-02-28
      • Published Date: 2014-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return