SEMICONDUCTOR DEVICES

Asymmetric quantum well broadband thyristor laser

Zhen Liu1, 2, 3, Jiaqi Wang1, 2, 3, Hongyan Yu1, 2, 3, Xuliang Zhou1, 2, 3, Weixi Chen4, Zhaosong Li1, 2, 3, Wei Wang1, 2, 3, Ying Ding5 and Jiaoqing Pan1, 2, 3,

+ Author Affiliations

 Corresponding author: Jiaoqing Pan, jqpan@semi.ac.cn

PDF

Abstract: A broadband thyristor laser based on InGaAs/GaAs asymmetric quantum well (AQW) is fabricated by metal organic chemical vapor deposition (MOCVD). The 3-μm-wide Fabry–Perot (FP) ridge-waveguide laser shows an S-shape IV characteristic and exhibits a flat-topped broadband optical spectrum coverage of ~27 nm (Δ−10 dB) at a center wavelength of ~1090 nm with a total output power of 137 mW under pulsed operation. The AQW structure was carefully designed to establish multiple energy states within, in order to broaden the gain spectrum. An obvious blue shift emission, which is not generally acquired in QW laser diodes, is observed in the broadening process of the optical spectrum as the injection current increases. This blue shift spectrum broadening is considered to result from the prominent band-filling effect enhanced by the multiple energy states of the AQW structure, as well as the optical feedback effect contributed by the thyristor laser structure.

Key words: broadband laserasymmetric quantum wellthyristor



[1]
Shidlovski V R, Wei J. Superluminescent diodes for optical coherence tomography. Proc SPIE, 2002, 4648: 139 doi: 10.1117/12.462650
[2]
Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy. Optoelectronics and Communication Conf and Australian Conf on Opt Fibre Technol, 2014
[3]
Heo D, Lee J S, Yun I K, et al. Polarization-independent, high-power, and angle-flared superluminescent diode for WDM-PON applications. Proc IEEE LEOS Annual Meeting Conf, 2005
[4]
Shin D J, Keh Y C, Kwon J W, et al. Low-cost WDM-PON with colorless bidirectional transceivers. J Lightwave Technol, 2006, 24(1): 158 doi: 10.1109/JLT.2005.861122
[5]
Gmachl C, Sivco D L, Colombelli R, et al. Ultra-broadband semiconductor laser. Nature, 2002, 415: 883 doi: 10.1038/415883a
[6]
Djie H S, Ooi B S , Fang X M, et al. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser. Opt Lett, 2007, 32: 44 doi: 10.1364/OL.32.000044
[7]
Djie H S, Tan C L, Ooi B S, et al. Ultrabroad stimulated emission from quantum-dash laser. Appl Phys Lett, 2007, 91: 111116 doi: 10.1063/1.2784969
[8]
Wang H, Zhou X, Yu H, et al. Ultrabroad stimulated emission from quantum well laser. Appl Phys Lett, 2014, 104: 251101 doi: 10.1063/1.4885366
[9]
Slipchenko S O, Podoskin A A, Rozhkov A V, et al. A study of nonlinear lasing dynamics of an InGaAs/AlGaAs/GaAs heterostructure power laser-thyristor emitting at 905 nm. J Appl Phys, 2014, 116: 084503 doi: 10.1063/1.4893956
[10]
Lin C F, Lee B L, Lin P C. Broad-band superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells. IEEE Photonics Technol Lett, 1996, 8: 1456 doi: 10.1109/68.541548
[11]
Kwon O K, Kim K, Sim E D, et al. Asymmetric multiple-quantum-well laser diodes with wide and flat gain. Opt Lett, 2003, 28: 2189 doi: 10.1364/OL.28.002189
[12]
Khan M Z M, Ng T K, Lee C S, et al. Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission. Appl Phys Lett, 2013, 102: 091102 doi: 10.1063/1.4794407
[13]
Podoskin A A, Soboleva O S, Zakharov M S, et al. Optical feedback in 905 nm power laser-thyristors based on AlGaAs/GaAs heterostructures. Semicond Sci Technol, 2015, 30: 125011 doi: 10.1088/0268-1242/30/12/125011
[14]
Slipchenko S O, Podoskin A A, Rozhkov A V, et al. High-power laser thyristors with high injection efficiency (λ=890-910 nm). IEEE Photonics Technol Lett, 2015, 27: 307
[15]
Bennett B R, Soref R A, Del Alamo J A. Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP. IEEE J Quantum Electron, 1990, 26: 113 doi: 10.1109/3.44924
[16]
Chen P A, Chang C Y, Juang C. Carrier-Induced Energy Shift in GaAs/AlGaAs Multiple Quantum Well Laser Diodes. IEEE J Quantum Electron, 1993, 29: 2607 doi: 10.1109/3.250382
Fig. 1.  Scanning electron microscope photograph of the ridge waveguide structure of the AQW laser.

Fig. 2.  (Color online) (a) Calculated energy states of InGaAs/GaAs AQW at equilibrium simulated by commercial software Crosslight (Crosslight Software, Inc., Canada). (b) Room temperature PL spectrum of InGaAs/GaAs AQW.

Fig. 3.  (Color online)(a) Nonlinear forward S-shape IV characteristic of the AQW laser. (b) A similar measurement was taken with a homemade XJ4810 oscilloscope (curve tracer).

Fig. 4.  (Color online)(a) The LI curve of the AQW laser testing at 15 °C. (b) LI curves tested near the threshold under varied temperatures from 10 °C to 45 °C.

Fig. 5.  (Color online) (a) Lasing spectra in a logarithmic scale under various current levels from 100 to 700 mA at 25 °C. (b) The corresponding spectral bandwidth measured at Δ −10 dB levels and center wavelength as a function of current.

Table 1.   The structure of the AQW broadband thyristor laser.

Material Thickness (nm) Doping concentration (cm−3)
GaAs 300 C-1×1020
Al0.47Ga0.53As 1800 C-1×1018
Al0.47Ga0.53As 35 Si -1×1019
GaAs 10 Si -1×1019
GaAs 8
Al0.47Ga0.53As 35
Al0.26–0.47Ga0.74–0.53As 55
GaAs 80
InGaAs 15
GaAs 15
InGaAs 5
GaAs 400
Al0.26Ga0.74As 100
Al0.47Ga0.53As 1800 Si-1×1019
GaAs buffer 400 Si-1×1019
DownLoad: CSV
[1]
Shidlovski V R, Wei J. Superluminescent diodes for optical coherence tomography. Proc SPIE, 2002, 4648: 139 doi: 10.1117/12.462650
[2]
Maeda Y, Yamada M, Endo T, et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy. Optoelectronics and Communication Conf and Australian Conf on Opt Fibre Technol, 2014
[3]
Heo D, Lee J S, Yun I K, et al. Polarization-independent, high-power, and angle-flared superluminescent diode for WDM-PON applications. Proc IEEE LEOS Annual Meeting Conf, 2005
[4]
Shin D J, Keh Y C, Kwon J W, et al. Low-cost WDM-PON with colorless bidirectional transceivers. J Lightwave Technol, 2006, 24(1): 158 doi: 10.1109/JLT.2005.861122
[5]
Gmachl C, Sivco D L, Colombelli R, et al. Ultra-broadband semiconductor laser. Nature, 2002, 415: 883 doi: 10.1038/415883a
[6]
Djie H S, Ooi B S , Fang X M, et al. Room-temperature broadband emission of an InGaAs/GaAs quantum dots laser. Opt Lett, 2007, 32: 44 doi: 10.1364/OL.32.000044
[7]
Djie H S, Tan C L, Ooi B S, et al. Ultrabroad stimulated emission from quantum-dash laser. Appl Phys Lett, 2007, 91: 111116 doi: 10.1063/1.2784969
[8]
Wang H, Zhou X, Yu H, et al. Ultrabroad stimulated emission from quantum well laser. Appl Phys Lett, 2014, 104: 251101 doi: 10.1063/1.4885366
[9]
Slipchenko S O, Podoskin A A, Rozhkov A V, et al. A study of nonlinear lasing dynamics of an InGaAs/AlGaAs/GaAs heterostructure power laser-thyristor emitting at 905 nm. J Appl Phys, 2014, 116: 084503 doi: 10.1063/1.4893956
[10]
Lin C F, Lee B L, Lin P C. Broad-band superluminescent diodes fabricated on a substrate with asymmetric dual quantum wells. IEEE Photonics Technol Lett, 1996, 8: 1456 doi: 10.1109/68.541548
[11]
Kwon O K, Kim K, Sim E D, et al. Asymmetric multiple-quantum-well laser diodes with wide and flat gain. Opt Lett, 2003, 28: 2189 doi: 10.1364/OL.28.002189
[12]
Khan M Z M, Ng T K, Lee C S, et al. Chirped InAs/InP quantum-dash laser with enhanced broad spectrum of stimulated emission. Appl Phys Lett, 2013, 102: 091102 doi: 10.1063/1.4794407
[13]
Podoskin A A, Soboleva O S, Zakharov M S, et al. Optical feedback in 905 nm power laser-thyristors based on AlGaAs/GaAs heterostructures. Semicond Sci Technol, 2015, 30: 125011 doi: 10.1088/0268-1242/30/12/125011
[14]
Slipchenko S O, Podoskin A A, Rozhkov A V, et al. High-power laser thyristors with high injection efficiency (λ=890-910 nm). IEEE Photonics Technol Lett, 2015, 27: 307
[15]
Bennett B R, Soref R A, Del Alamo J A. Carrier-Induced Change in Refractive Index of InP, GaAs, and InGaAsP. IEEE J Quantum Electron, 1990, 26: 113 doi: 10.1109/3.44924
[16]
Chen P A, Chang C Y, Juang C. Carrier-Induced Energy Shift in GaAs/AlGaAs Multiple Quantum Well Laser Diodes. IEEE J Quantum Electron, 1993, 29: 2607 doi: 10.1109/3.250382
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3329 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 13 March 2017 Revised: 16 May 2017 Online: Uncorrected proof: 30 October 2017Accepted Manuscript: 13 November 2017Published: 01 November 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhen Liu, Jiaqi Wang, Hongyan Yu, Xuliang Zhou, Weixi Chen, Zhaosong Li, Wei Wang, Ying Ding, Jiaoqing Pan. Asymmetric quantum well broadband thyristor laser[J]. Journal of Semiconductors, 2017, 38(11): 114006. doi: 10.1088/1674-4926/38/11/114006 Z Liu, J Q Wang, H Y Yu, X L Zhou, W X Chen, Z S Li, W Wang, Y Ding, J Q Pan. Asymmetric quantum well broadband thyristor laser[J]. J. Semicond., 2017, 38(11): 114006. doi: 10.1088/1674-4926/38/11/114006.Export: BibTex EndNote
      Citation:
      Zhen Liu, Jiaqi Wang, Hongyan Yu, Xuliang Zhou, Weixi Chen, Zhaosong Li, Wei Wang, Ying Ding, Jiaoqing Pan. Asymmetric quantum well broadband thyristor laser[J]. Journal of Semiconductors, 2017, 38(11): 114006. doi: 10.1088/1674-4926/38/11/114006

      Z Liu, J Q Wang, H Y Yu, X L Zhou, W X Chen, Z S Li, W Wang, Y Ding, J Q Pan. Asymmetric quantum well broadband thyristor laser[J]. J. Semicond., 2017, 38(11): 114006. doi: 10.1088/1674-4926/38/11/114006.
      Export: BibTex EndNote

      Asymmetric quantum well broadband thyristor laser

      doi: 10.1088/1674-4926/38/11/114006
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61604144, 61504137). Zhen Liu and Jiaqi Wang contributed equally to this work.

      More Information
      • Corresponding author: jqpan@semi.ac.cn
      • Received Date: 2017-03-13
      • Revised Date: 2017-05-16
      • Published Date: 2017-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return