SEMICONDUCTOR INTEGRATED CIRCUITS

A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters

Qing Wang, Ning Chen, Shen Xu, Weifeng Sun and Longxing Shi

+ Author Affiliations

 Corresponding author: Sun Weifeng, Email:swffrog@seu.edu.cn

PDF

Abstract: The purpose of this paper is to present a novel trajectory prediction method for proximate time-optimal digital control DC-DC converters. The control method provides pre-estimations of the duty ratio in the next several switching cycles, so as to compensate the computational time delay of the control loop and increase the control loop bandwidth, thereby improving the response speed. The experiment results show that the fastest transient response time of the digital DC-DC with the proposed prediction is about 8 μs when the load current changes from 0.6 to 0.1 A.

Key words: transient responsedigital controlDC-DC converterspredictiontime delay



[1]
Yan W, Li W H, Liu R. A noise-shaped buck DC-DC converter with improved light-load efficiency and fast transient response. IEEE Trans Power Electron, 2011, 26(12):3908 doi: 10.1109/TPEL.2011.2136361
[2]
Tsai J C, Chen C L, Lee Y H, et al. Modified hysteretic current control (MHCC) for improving transient response of boost converter. IEEE Trans Circuits Syst Ⅰ:Regular Papers, 2011, 58(8):1967 doi: 10.1109/TCSI.2011.2106231
[3]
Meyer E, Zhang Z L, Liu Y F. Controlled auxiliary circuit to improve the unloading transient response of buck converters. IEEE Trans Power Electron, 2010, 25(4):806 doi: 10.1109/TPEL.2009.2032362
[4]
Smedley K M, Cuk S. One cycle control of switching converters. IEEE Trans Power Electron, 1995, 10(6):625 doi: 10.1109/63.471281
[5]
Bibian S, Jin H. Time delay compensation of digital control for DC switch mode power supplies using prediction techniques. IEEE Trans Power Electron, 2000, 15(5):835 doi: 10.1109/63.867672
[6]
Lee A T L, Chan P C H. Adaptive prediction in digitally controlled buck converter with fast load transient response. Proc 13th IEEE Control and Modeling for Power Electronics, Kyoto, Japan, 2012 http://ieeexplore.ieee.org/document/6251747/
[7]
Leung K K S, Chung H S H. State trajectory prediction control for boost converters. Proc 2004 Circuits and Systems, Vancouver, Canada, 2004: V-556 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1329720
[8]
Nasab T M M. Application of Smith prediction technique in designing of variable structure control systems for plants with time delay. Proc 1999 IEEE Industrial Electronics, Bled, Slovenia, 1999: 1111 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=796851
[9]
Kurokawa F, Maruta H, Sakemi J, et al. A new prediction based digital control DC-DC converter. Proc 2010 Ninth International Conference on Machine Learning and Applications, Washington, USA, 2010: 720 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5708932
[10]
Kurokawa F, Ueno K, Maruta H, et al. A new digital control DC-DC converter with repetition neural network prediction. Proc 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, Singapore, 2011: 648 http://www.mendeley.com/research/new-digital-control-dcdc-converter-neural-network-predictor-1/
Fig. 1.  The trajectory curve of the switching converter system. (a) The system curve when $v_{\rm out}(t)$ > $V_{\rm REF}$, $i_{\rm L}(t)$ > $I_{\rm REF}$ or $i_{\rm L}(t)$ < $I_{\rm REF}$ at first. (b) The motion curve of the point lies in the first quadrant. (c) The motion curve of the point lies in the fourth quadrant.

Fig. 2.  The data processing in different control loops. (a) The data processing of the PID controller. (b) The data processing of the proposed trajectory prediction controller.

Fig. 3.  Bode plots of the open-loop frequency response with the proposed trajectory prediction control and the conventional PID control.

Fig. 4.  Simulation transient waveforms using a PID controller (left) and the proposed prediction controller (right). (a) The load current step-down from 0.6 to 0.25 A. (b) The load current step-up from 0.25 to 0.6 A.

Fig. 5.  Synchronous buck converter and modules of control loop.

Fig. 6.  Experimental load transient waveforms for the proposed trajectory prediction controller at step-up and step-down. Load current change between (a) 0.6 and 0.2 A, (b) 0.6 and 0.1 A, and (c) 0.6 and 0 A.

Table 1.   Performance comparison.

[1]
Yan W, Li W H, Liu R. A noise-shaped buck DC-DC converter with improved light-load efficiency and fast transient response. IEEE Trans Power Electron, 2011, 26(12):3908 doi: 10.1109/TPEL.2011.2136361
[2]
Tsai J C, Chen C L, Lee Y H, et al. Modified hysteretic current control (MHCC) for improving transient response of boost converter. IEEE Trans Circuits Syst Ⅰ:Regular Papers, 2011, 58(8):1967 doi: 10.1109/TCSI.2011.2106231
[3]
Meyer E, Zhang Z L, Liu Y F. Controlled auxiliary circuit to improve the unloading transient response of buck converters. IEEE Trans Power Electron, 2010, 25(4):806 doi: 10.1109/TPEL.2009.2032362
[4]
Smedley K M, Cuk S. One cycle control of switching converters. IEEE Trans Power Electron, 1995, 10(6):625 doi: 10.1109/63.471281
[5]
Bibian S, Jin H. Time delay compensation of digital control for DC switch mode power supplies using prediction techniques. IEEE Trans Power Electron, 2000, 15(5):835 doi: 10.1109/63.867672
[6]
Lee A T L, Chan P C H. Adaptive prediction in digitally controlled buck converter with fast load transient response. Proc 13th IEEE Control and Modeling for Power Electronics, Kyoto, Japan, 2012 http://ieeexplore.ieee.org/document/6251747/
[7]
Leung K K S, Chung H S H. State trajectory prediction control for boost converters. Proc 2004 Circuits and Systems, Vancouver, Canada, 2004: V-556 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1329720
[8]
Nasab T M M. Application of Smith prediction technique in designing of variable structure control systems for plants with time delay. Proc 1999 IEEE Industrial Electronics, Bled, Slovenia, 1999: 1111 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=796851
[9]
Kurokawa F, Maruta H, Sakemi J, et al. A new prediction based digital control DC-DC converter. Proc 2010 Ninth International Conference on Machine Learning and Applications, Washington, USA, 2010: 720 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5708932
[10]
Kurokawa F, Ueno K, Maruta H, et al. A new digital control DC-DC converter with repetition neural network prediction. Proc 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems, Singapore, 2011: 648 http://www.mendeley.com/research/new-digital-control-dcdc-converter-neural-network-predictor-1/
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2255 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 31 October 2013 Revised: 15 March 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qing Wang, Ning Chen, Shen Xu, Weifeng Sun, Longxing Shi. A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters[J]. Journal of Semiconductors, 2014, 35(9): 095010. doi: 10.1088/1674-4926/35/9/095010 Q Wang, N Chen, S Xu, W F Sun, L X Shi. A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters[J]. J. Semicond., 2014, 35(9): 095010. doi: 10.1088/1674-4926/35/9/095010.Export: BibTex EndNote
      Citation:
      Qing Wang, Ning Chen, Shen Xu, Weifeng Sun, Longxing Shi. A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters[J]. Journal of Semiconductors, 2014, 35(9): 095010. doi: 10.1088/1674-4926/35/9/095010

      Q Wang, N Chen, S Xu, W F Sun, L X Shi. A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters[J]. J. Semicond., 2014, 35(9): 095010. doi: 10.1088/1674-4926/35/9/095010.
      Export: BibTex EndNote

      A novel trajectory prediction control for proximate time-optimal digital control DC-DC converters

      doi: 10.1088/1674-4926/35/9/095010
      Funds:

      the National Natural Science Foundation of China 61274022

      the National Natural Science Foundation of China 61201034

      Project supported by the National Natural Science Foundation of China (Nos. 61274022, 61201034), the Natural Science Foundation of the Jiangsu Province (No. BK2011059), the Program for New Century Excellent Talents in University (No. NCET-10-0331), and the Qing Lan Project

      the Natural Science Foundation of the Jiangsu Province BK2011059

      the Program for New Century Excellent Talents in University NCET-10-0331

      More Information
      • Corresponding author: Sun Weifeng, Email:swffrog@seu.edu.cn
      • Received Date: 2013-10-31
      • Revised Date: 2014-03-15
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return