SEMICONDUCTOR INTEGRATED CIRCUITS

Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver

Binjie Ge, Yan Li, Hang Yu and Xiaoxing Feng

+ Author Affiliations

 Corresponding author: Yan Li, Email: liyan@szu.edu.cn

PDF

Turn off MathJax

Abstract: This paper presents the design and implementation of quadrature bandpass sigma–delta modulator. A pole movement method for transforming real sigma–delta modulator to a quadrature one is proposed by detailed study of the relationship of noise-shaping center frequency and integrator pole position in sigma–delta modulator. The proposed modulator uses sampling capacitor sharing switched capacitor integrator, and achieves a very small feedback coefficient by a series capacitor network, and those two techniques can dramatically reduce capacitor area. Quantizer output-dependent dummy capacitor load for reference voltage buffer can compensate signal-dependent noise that is caused by load variation. This paper designs a quadrature bandpass Sigma-Delta modulator for 2.4 GHz low IF receivers that achieve 69 dB SNDR at 1 MHz BW and −1 MHz IF with 48 MHz clock. The chip is fabricated with SMIC 0.18 μm CMOS technology, it achieves a total power current of 2.1 mA, and the chip area is 0.48 mm2.

Key words: quadraturebandpass pole-movementsigma–delta image-rejection



[1]
Razavi B. RF microelectronics. 2nd ed. Pearson Education, Inc, 2012
[2]
Crols J, Steyaert S J. Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans Circuits Syst II, 1998, 45(3): 269 doi: 10.1109/82.664233
[3]
Cui F L. Mixer and image-rejection circuit analysis and design in Bluetooth transceiver. PhD Thesis, Fudan University, 2004
[4]
Xu Y, Zhang Z H, Chi B Y, et al. A 5-/20-MHz BW reconfigurable quadrature bandpass CT ΔΣ ADC with antipole-splitting opamp and digital I/Q calibration. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2016, 24(1): 234
[5]
Zhang J F, Xu Y, Zhang Z H, et al. A 10-b fourth-order quadrature bandpass continuous-time ΣΔ modulator with 33-MHz bandwidth for a dual-channel GNSS receiver. IEEE Trans Microwave Theory Tech, 2017, 65(4): 1303 doi: 10.1109/TMTT.2017.2662378
[6]
Li B, Pun K P. A high image-rejection sc quadrature bandpass DSM for low-IF receivers. IEEE Trans Circuits Syst I, 2014, 61(1): 92 doi: 10.1109/TCSI.2013.2268588
[7]
Allen M, Marttila J, Valkama M. Wideband quadrature sigma-delta A/D conversion for cognitive radio - reconfigurable design and digital mirror-frequency suppression. Vehicular Technology Conference (VTC Fall), 2013: 1090
[8]
Martin K W. Complex signal processing is not complex. IEEE Trans Circuits Syst I, 2004, 51(9): 1823 doi: 10.1109/TCSI.2004.834522
[9]
Pavan S, Schreier R, Temes G. Understanding delta-sigma data converters. 2nd ed. John Wiley & Sons, Inc, 2016
[10]
Neitola M. Loop filter design and optimization for quadrature delta–sigma converters. IEEE European Conference on Circuit Theory and Design, 2015: 24
[11]
Jantzi S A, Martin K W, Sedra A S. Quadrature bandpass modulator for digital radio. IEEE J Solid-State Circuits, 1997, 32(12): 1935 doi: 10.1109/4.643651
[12]
Ge B J, Wang X A, Zhang X, et al. Sigma-delta modulator modeling analysis and design. J Semicond, 2010, 31(9): 095003 doi: 10.1088/1674-4926/31/9/095003
[13]
Ge B J, Wang X A, Zhang X, et al. Study and analysis of coefficient mismatch in a MASH21 sigma-delta modulator. J Semicond, 2010, 31(1): 015007 doi: 10.1088/1674-4926/31/1/015007
[14]
Razavi B. Design of analog CMOS intergrated circuits. 2nd ed. McGraw-Hill Education, 2016
[15]
Philips K. A 4.4 mW 76 dB complex ADC for bluetooth receivers. IEEE ISSCC, 2003: 64
[16]
Atac A, Liao L, Wang Y, et al. A 1.7 mW quadrature bandpass ΔΣ ADC with 1 MHz bandwidth and 60 dB DR at 1 MHz IF. IEEE International Symposium on Circuits & Systems, 2013, 1035(10): 1039
Fig. 1.  Low-IF receiver with quadrature bandpass sigma–delta modulator.

Fig. 2.  1st order lowpass sigma–delta modulator.

Fig. 3.  Signal flow graph of complex integrator.

Fig. 4.  Complex integrator realized by cross-coupled real integrators.

Fig. 5.  Proposed quadrature bandpass sigma–delta modulator.

Fig. 6.  PSD of proposed modulator in MATLAB modeling.

Fig. 7.  (a) Real 3rd order sigma–delta modulator. (b) Quadrature bandpass sigma–delta modulator.

Fig. 8.  PH1 Phase network of zero feedback.

Fig. 9.  PH2 Phase network of zero feedback.

Fig. 10.  Dummy capacitor load for reference voltage buffer.

Fig. 11.  Fully differential input comparator.

Fig. 12.  (Color online) Photograph of the fabricated modulator in transceiver.

Fig. 13.  (Color online) PCB test board of proposed modulator.

Fig. 14.  (Color online) PSD of post simulation and testing results.

Fig. 15.  Two tones test PSD of proposed modulator.

Table 1.   Pole movement.

Pole name Real-SDM Complex-SDM Image-Delta
Real-Pole 1 0.9914 − j0.1305 0.1305
Complex-Pole1 0.9989 + j0.0468 0.9842 − j0.084 0.1308
Complex-Pole2 0.9989 − j0.0468 0.9964 − j0.1768 0.1300
DownLoad: CSV

Table 2.   Modulator coefficient values.

Name Ideal Real Name Ideal Real
a1 0.1 1/8 c1 0.3561 2/8
a2 0.2425 2/8 c2 0.3778 3/8
a3 0.3561 3/8 c3 5.5 5.5
b1 0.044 1/16 g 0.006 1/240
DownLoad: CSV

Table 3.   Opamp design specifications.

Parameter 1st opamp 2nd opamp 3rd opamp
Slew rate (MV/s) 120 60 60
DC gain (dB) 50 52 52
GBW (MHz) 550 280 280
Von (mV) 40 60 60
Power current (μA) 490 240 240
DownLoad: CSV

Table 4.   Modulator capacitor value.

Cap 1st integrator 2nd integrator 3rd integrator Zero cap
CS 2C0 2C0 3C0 CZ3 = 1C0
CIQ 4C0 1C0 1C0
CFB 2C0 CS share CS share CZ3 = 28C0
CI 32C0 8C0 8C0 CZ3 = 1C0
DownLoad: CSV

Table 5.   Test results and comparison.

Parameter Ref. [15] Ref. [16] This work
Bandwidth (MHz) 1 1 1
IF (MHz) 0.5 1 −1
fs (MHz) 64 32 48
Modulator 5th CT 3rd CT 3rd SC
DR (dB) 76 60 70
SNDRpeak (dB) 75.5 58.6 > 69
Image rejection (dB) > 47 44.6 ---
IM3 distortion (dBc) < −82 −49 < −58
Power (mA) 2.44 @ 1.8 V 1.42 @ 1.2 V 2.1 @ 1.8 V
Technology (μm) 0.18 0.13 0.18
Area (mm2) 0.22 0.62 0.48
DownLoad: CSV
[1]
Razavi B. RF microelectronics. 2nd ed. Pearson Education, Inc, 2012
[2]
Crols J, Steyaert S J. Low-IF topologies for high-performance analog front ends of fully integrated receivers. IEEE Trans Circuits Syst II, 1998, 45(3): 269 doi: 10.1109/82.664233
[3]
Cui F L. Mixer and image-rejection circuit analysis and design in Bluetooth transceiver. PhD Thesis, Fudan University, 2004
[4]
Xu Y, Zhang Z H, Chi B Y, et al. A 5-/20-MHz BW reconfigurable quadrature bandpass CT ΔΣ ADC with antipole-splitting opamp and digital I/Q calibration. IEEE Trans Very Large Scale Integr (VLSI) Syst, 2016, 24(1): 234
[5]
Zhang J F, Xu Y, Zhang Z H, et al. A 10-b fourth-order quadrature bandpass continuous-time ΣΔ modulator with 33-MHz bandwidth for a dual-channel GNSS receiver. IEEE Trans Microwave Theory Tech, 2017, 65(4): 1303 doi: 10.1109/TMTT.2017.2662378
[6]
Li B, Pun K P. A high image-rejection sc quadrature bandpass DSM for low-IF receivers. IEEE Trans Circuits Syst I, 2014, 61(1): 92 doi: 10.1109/TCSI.2013.2268588
[7]
Allen M, Marttila J, Valkama M. Wideband quadrature sigma-delta A/D conversion for cognitive radio - reconfigurable design and digital mirror-frequency suppression. Vehicular Technology Conference (VTC Fall), 2013: 1090
[8]
Martin K W. Complex signal processing is not complex. IEEE Trans Circuits Syst I, 2004, 51(9): 1823 doi: 10.1109/TCSI.2004.834522
[9]
Pavan S, Schreier R, Temes G. Understanding delta-sigma data converters. 2nd ed. John Wiley & Sons, Inc, 2016
[10]
Neitola M. Loop filter design and optimization for quadrature delta–sigma converters. IEEE European Conference on Circuit Theory and Design, 2015: 24
[11]
Jantzi S A, Martin K W, Sedra A S. Quadrature bandpass modulator for digital radio. IEEE J Solid-State Circuits, 1997, 32(12): 1935 doi: 10.1109/4.643651
[12]
Ge B J, Wang X A, Zhang X, et al. Sigma-delta modulator modeling analysis and design. J Semicond, 2010, 31(9): 095003 doi: 10.1088/1674-4926/31/9/095003
[13]
Ge B J, Wang X A, Zhang X, et al. Study and analysis of coefficient mismatch in a MASH21 sigma-delta modulator. J Semicond, 2010, 31(1): 015007 doi: 10.1088/1674-4926/31/1/015007
[14]
Razavi B. Design of analog CMOS intergrated circuits. 2nd ed. McGraw-Hill Education, 2016
[15]
Philips K. A 4.4 mW 76 dB complex ADC for bluetooth receivers. IEEE ISSCC, 2003: 64
[16]
Atac A, Liao L, Wang Y, et al. A 1.7 mW quadrature bandpass ΔΣ ADC with 1 MHz bandwidth and 60 dB DR at 1 MHz IF. IEEE International Symposium on Circuits & Systems, 2013, 1035(10): 1039
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3578 Times PDF downloads: 76 Times Cited by: 0 Times

    History

    Received: 25 July 2017 Revised: 12 December 2017 Online: Accepted Manuscript: 13 January 2018Uncorrected proof: 24 January 2018Published: 01 May 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Binjie Ge, Yan Li, Hang Yu, Xiaoxing Feng. Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver[J]. Journal of Semiconductors, 2018, 39(5): 055002. doi: 10.1088/1674-4926/39/5/055002 B J Ge, Y Li, H Yu, X X Feng. Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver[J]. J. Semicond., 2018, 39(5): 055002. doi: 10.1088/1674-4926/39/5/055002.Export: BibTex EndNote
      Citation:
      Binjie Ge, Yan Li, Hang Yu, Xiaoxing Feng. Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver[J]. Journal of Semiconductors, 2018, 39(5): 055002. doi: 10.1088/1674-4926/39/5/055002

      B J Ge, Y Li, H Yu, X X Feng. Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver[J]. J. Semicond., 2018, 39(5): 055002. doi: 10.1088/1674-4926/39/5/055002.
      Export: BibTex EndNote

      Design and implementation of quadrature bandpass sigma–delta modulator used in low-IF RF receiver

      doi: 10.1088/1674-4926/39/5/055002
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61471245, U1201256), the Guangdong Province Foundation (No. 2014B090901031), and the Shenzhen Foundation (Nos. JCYJ20160308095019383, JSGG20150529160945187).

      More Information
      • Corresponding author: Email: liyan@szu.edu.cn
      • Received Date: 2017-07-25
      • Revised Date: 2017-12-12
      • Published Date: 2018-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return