SEMICONDUCTOR DEVICES

Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs

Bo Mei, Jinshun Bi, Jianhui Bu and Zhengsheng Han

+ Author Affiliations

 Corresponding author: Han Zhengsheng, Email:zshan@ime.ac.cn

PDF

Abstract: A bimodal effect of transconductance was observed in narrow channel PDSOI sub-micron H-gate PMOSFETs, which was accompanied with the degeneration of device performance. This paper presents a study of the transconductance bimodal effect based on the manufacturing process and electrical properties of those devices. It is shown that this effect is caused by a diffusion of donor impurities from the N+ region of body contact to the P+ poly gate at the neck of the H-gate, which would change the work function differences of the polysilicon gate and substrate. This means that the threshold voltage of the device is different in the width direction, which means that there are parasitic transistors paralleled with the main transistor at the neck of the H-gate. The subsequent devices were fabricated with layout optimization, and it is demonstrated that the bimodal transconductance can be eliminated by mask modification with N+ implantation more than 0.2 μm away from a poly gate.

Key words: transconductancethreshold voltagework functionsilicon-on-insulator



[1]
Razavi B. Design of analog CMOS integrated circuits. Beijing:Tsinghua University Press, 2009
[2]
Singh K, Bhattacharyya A B. Transconductance related analysis of EKV MOSFET model for a 0. 35μm CMOS technology node. Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems, 2010: 436
[3]
Gutierrez D E A, Deferm L, Declerck G. Transconductance degradation and its correlation to the second substrate current hump of submicron NMOS LDD transistors. Solid State Device Research Conference, 1991: 16
[4]
Sum J Y C, Wordeman M R, Laux S. On the accuracy of channel length characterization of LDD MOSFETs. IEEE Trans Electron Devices, 1986, 33(10):1556 doi: 10.1109/T-ED.1986.22707
[5]
Flandre D, Klichytska V, Rudenko T. gm/ID method for threshold voltage extraction applicable in advanced MOSFETs with nonlinear behavior above threshold. IEEE Electron Device Lett, 2010, 31(9):930 doi: 10.1109/LED.2010.2055829
[6]
Rudenko T, Kichytska V, Arshad M K M, et al. On the MOSFET threshold voltage extraction by transconductance and transconductance-to-current ratio change methods:part Ⅰ——effect of gate-voltage-dependent mobility. IEEE Trans Electron Devices, 2011, 58(12):4172 doi: 10.1109/TED.2011.2168226
[7]
Rudenko T, Kichytska V, Arshad M K M, et al. On the MOSFET threshold voltage extraction by transconductance and transconductance-to-current ratio change methods:part Ⅰ——effect of drain voltage. IEEE Trans Electron Devices, 2011, 58(12):4180 doi: 10.1109/TED.2011.2168227
[8]
Fowler A B, Hartstein A M. Techniques for determining threshold. Surf Sci, 1980, 98(1-3):169 doi: 10.1016/0039-6028(80)90489-6
[9]
Krutsick T J, White M H, Wong H S, et al. An improved model of MOSFET modeling and parameter, extraction. IEEE Trans Electron Devices, 1987, ED-34(8):1676
[10]
Ghibaudo G. New method for the extraction of MOSFET parameters. Electron Lett, 1988, 24(9):543 doi: 10.1049/el:19880369
[11]
Park C K, Lee C Y, Lee K, et al. A unified current-voltage model for long-channel MOSFETs. IEEE Trans Electron Devices, 1991, 38(2):399 doi: 10.1109/16.69923
[12]
Sze S M, Ng K K. Physics of semiconductor devices. Xi'an:Xi'an Jiaotong University Press, 2008
[13]
Wong H S, White M H, Krutsick T J. Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFETs. Solid-State Electron, 1987, 30(9):953 doi: 10.1016/0038-1101(87)90132-8
[14]
Neamen D A. Semiconductor physics and devices-basic principles. Beijing:Tsinghua University Press, 2003
[15]
Sze S M. Physics of semiconductor devices. New York:Wiley, 1981
[16]
Werner W M. The work function difference of the MOS system with aluminum field plates and polycrystalline silicon field plates. Solid-State Electron, 1974, 17:769 doi: 10.1016/0038-1101(74)90023-9
Fig. 1.  Structural diagram of an H-gate MOSFET with a channel length of 0.18 $\mu$m.

Fig. 2.  Transfer characteristics of various channel widths for (a) SOI NMOSFETs and (b) SOI PMOSFETs ($V_{\rm B}$ $=$ 0, $V_{\rm DS}$ $=$ 0.05 V).

Fig. 3.  Transconductance versus gate voltage characteristics of (a) SOI NMOSFETs and (b) SOI PMOSFETs ($V_{\rm B}$ $=$ 0, $V_{\rm DS}$ $=$ 0.05 V).

Fig. 4.  Bimodal transconductance for narrow width PMOSFETs both of (a) long channel devices and (b) short channel devices.

Fig. 5.  Energy-band diagram through the MOS structure with a n-type substrate at zero gate bias for (a) an N$^+$ poly-gate and (b) a P$^+$ poly-gate.

Fig. 6.  Poly profile simulation of (a) NMOS BB', (b) PMOS BB', and (c) PMOS AA'.

Fig. 7.  Meta–semiconductor work function difference versus doping for aluminum, gold, N$^+$ and P$^+$ polysilicon gates.

Fig. 8.  Schematic diagram of the actual channel of a narrow width device (a) partial layout and (b) actual channel width.

Fig. 9.  Transconductance characteristics of narrow channel PD SOI PMOSFETs after the layout change (a) long channel devices and (b) short channel devices.

[1]
Razavi B. Design of analog CMOS integrated circuits. Beijing:Tsinghua University Press, 2009
[2]
Singh K, Bhattacharyya A B. Transconductance related analysis of EKV MOSFET model for a 0. 35μm CMOS technology node. Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems, 2010: 436
[3]
Gutierrez D E A, Deferm L, Declerck G. Transconductance degradation and its correlation to the second substrate current hump of submicron NMOS LDD transistors. Solid State Device Research Conference, 1991: 16
[4]
Sum J Y C, Wordeman M R, Laux S. On the accuracy of channel length characterization of LDD MOSFETs. IEEE Trans Electron Devices, 1986, 33(10):1556 doi: 10.1109/T-ED.1986.22707
[5]
Flandre D, Klichytska V, Rudenko T. gm/ID method for threshold voltage extraction applicable in advanced MOSFETs with nonlinear behavior above threshold. IEEE Electron Device Lett, 2010, 31(9):930 doi: 10.1109/LED.2010.2055829
[6]
Rudenko T, Kichytska V, Arshad M K M, et al. On the MOSFET threshold voltage extraction by transconductance and transconductance-to-current ratio change methods:part Ⅰ——effect of gate-voltage-dependent mobility. IEEE Trans Electron Devices, 2011, 58(12):4172 doi: 10.1109/TED.2011.2168226
[7]
Rudenko T, Kichytska V, Arshad M K M, et al. On the MOSFET threshold voltage extraction by transconductance and transconductance-to-current ratio change methods:part Ⅰ——effect of drain voltage. IEEE Trans Electron Devices, 2011, 58(12):4180 doi: 10.1109/TED.2011.2168227
[8]
Fowler A B, Hartstein A M. Techniques for determining threshold. Surf Sci, 1980, 98(1-3):169 doi: 10.1016/0039-6028(80)90489-6
[9]
Krutsick T J, White M H, Wong H S, et al. An improved model of MOSFET modeling and parameter, extraction. IEEE Trans Electron Devices, 1987, ED-34(8):1676
[10]
Ghibaudo G. New method for the extraction of MOSFET parameters. Electron Lett, 1988, 24(9):543 doi: 10.1049/el:19880369
[11]
Park C K, Lee C Y, Lee K, et al. A unified current-voltage model for long-channel MOSFETs. IEEE Trans Electron Devices, 1991, 38(2):399 doi: 10.1109/16.69923
[12]
Sze S M, Ng K K. Physics of semiconductor devices. Xi'an:Xi'an Jiaotong University Press, 2008
[13]
Wong H S, White M H, Krutsick T J. Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFETs. Solid-State Electron, 1987, 30(9):953 doi: 10.1016/0038-1101(87)90132-8
[14]
Neamen D A. Semiconductor physics and devices-basic principles. Beijing:Tsinghua University Press, 2003
[15]
Sze S M. Physics of semiconductor devices. New York:Wiley, 1981
[16]
Werner W M. The work function difference of the MOS system with aluminum field plates and polycrystalline silicon field plates. Solid-State Electron, 1974, 17:769 doi: 10.1016/0038-1101(74)90023-9
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2756 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 26 June 2012 Revised: 16 July 2012 Online: Published: 01 January 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bo Mei, Jinshun Bi, Jianhui Bu, Zhengsheng Han. Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs[J]. Journal of Semiconductors, 2013, 34(1): 014004. doi: 10.1088/1674-4926/34/1/014004 B Mei, J S Bi, J H Bu, Z S Han. Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs[J]. J. Semicond., 2013, 34(1): 014004. doi: 10.1088/1674-4926/34/1/014004.Export: BibTex EndNote
      Citation:
      Bo Mei, Jinshun Bi, Jianhui Bu, Zhengsheng Han. Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs[J]. Journal of Semiconductors, 2013, 34(1): 014004. doi: 10.1088/1674-4926/34/1/014004

      B Mei, J S Bi, J H Bu, Z S Han. Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs[J]. J. Semicond., 2013, 34(1): 014004. doi: 10.1088/1674-4926/34/1/014004.
      Export: BibTex EndNote

      Transconductance bimodal effect of PDSOI submicron H-gate MOSFETs

      doi: 10.1088/1674-4926/34/1/014004
      More Information
      • Corresponding author: Han Zhengsheng, Email:zshan@ime.ac.cn
      • Received Date: 2012-06-26
      • Revised Date: 2012-07-16
      • Published Date: 2013-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return