SEMICONDUCTOR DEVICES

A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors

Bin Niu, Hongyan Yu, Liqiang Yu, Daibing Zhou, Dan Lu, Lingjuan Zhao, Jiaoqing Pan and Wei Wang

+ Author Affiliations

 Corresponding author: Wang Wei, wwang@red.semi.ac.cn

PDF

Abstract: A 1.65-μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors is reported. The DBR laser has a wide tunable range covering the R3 and R4 methane absorption line manifolds. The wavelength tunability properties, temperature stability and laser linewidth are characterized and analyzed. Several advantages were demonstrated compared with traditional DFB lasers in harmonic detection.

Key words: CH4DBRDSHgas sensorInPTDLAS



[1]
Rothman L S, Gamache R R, Tipping R H, et al. The HITRAN molecular database:editions of 1991 and 1992. J Quant Spectrosc Radiat Transfer, 1992, 48:469 doi: 10.1016/0022-4073(92)90115-K
[2]
Cassidy D T, Reid J. Harmonic detection with tunable diode lasers two-tone modulation. App1 Phys B, 1982, 29:279 doi: 10.1007/BF00689188
[3]
Whittaker E A, Gehrtz M, Bjorklund G C. Residual amplitude modulation in laser electro-optic phase modulation. J Opt Soc Am B, 1985, 2(8):1320 doi: 10.1364/JOSAB.2.001320
[4]
Whittaker E A, Shum C M, Grebel H, et al. Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation. J Opt Soc Am B, 1988, 5(6):1253 doi: 10.1364/JOSAB.5.001253
[5]
Caponio N P, Goano M, Maio I, et al. Analysis and design criteria of three-section DBR tunable lasers. IEEE J Sel Areas Commun, 1990, 8:1203 doi: 10.1109/49.57827
[6]
Coldren L A. Monolithic tunable diode lasers. IEEE J Sel Topics Quantum Electron, 2000, 6(6):988 doi: 10.1109/2944.902147
[7]
Coldren L A, Fish G A, Akulova Y, et al. Tunable semiconductor lasers:a tutorial. J Lightwave Technol, 2004, 22(1):193 doi: 10.1109/JLT.2003.822207
[8]
Skogen E J, Barton J S, Denbaars S P, et al. A quantum-well-intermixing process for wavelength-agile photonic integrated circuits. IEEE J Sel Topics Quantum Electron, 2002, 8(4):863 doi: 10.1109/JSTQE.2002.800849
[9]
Zhang N, Rao W, Meng Z, et al. Linewidth study of the frequency-modulated laser based on the delayed self-heterodyne scheme. Opt Laser Technol, 2013, 45:267 doi: 10.1016/j.optlastec.2012.06.036
Fig. 1.  Microscope picture of the 1.65-$\mu m$ three-section DBR laser diode.

Fig. 2.  Epi-layer of the laser diode.

Fig. 3.  Cross section SEM picture of the waveguide.

Fig. 4.  (a) Tuning rate and PIV curves of the gain section current when ${I_{\text{p}}}$ = 3.4 mA, ${I_{\text{d}}}$ = 10 mA. (b) Wavelength tuning range of ${I_{\text{d}}}$ when ${I_{\text{g}}}$ = 70 mA, ${I_{\text{p}}}$ = 0 mA

Fig. 5.  (a) Wavelength tuning rate and power fluctuation of ${I_{\text{p}}}$ when ${I_{\text{g}}}$ = 70 mA, ${I_{\text{d}}}$ = 10 mA. (b) Spectra and side mode suppression ratio (SMSR) of data points in Fig. 5(a).

Fig. 6.  Lasing modes at CH4 absorption line manifolds: 1650.96 nm (R4) emitted when ${I_{\text{g}}}$ = 70 mA, ${I_{\text{p}}}$ = 3.4 mA, ${I_{\text{d}}}$ = 10 mA; 1653.72 nm (R3) emitted when ${I_{\text{g}}}$ = 70 mA, ${I_{\text{p}}}$ = 3.4 mA, ${I_{\text{d}}}$ = 45 mA.

Fig. 7.  Temperature dependency of wavelength and output power.

Fig. 8.  Linewidth characterized using the DSH method

[1]
Rothman L S, Gamache R R, Tipping R H, et al. The HITRAN molecular database:editions of 1991 and 1992. J Quant Spectrosc Radiat Transfer, 1992, 48:469 doi: 10.1016/0022-4073(92)90115-K
[2]
Cassidy D T, Reid J. Harmonic detection with tunable diode lasers two-tone modulation. App1 Phys B, 1982, 29:279 doi: 10.1007/BF00689188
[3]
Whittaker E A, Gehrtz M, Bjorklund G C. Residual amplitude modulation in laser electro-optic phase modulation. J Opt Soc Am B, 1985, 2(8):1320 doi: 10.1364/JOSAB.2.001320
[4]
Whittaker E A, Shum C M, Grebel H, et al. Reduction of residual amplitude modulation in frequency-modulation spectroscopy by using harmonic frequency modulation. J Opt Soc Am B, 1988, 5(6):1253 doi: 10.1364/JOSAB.5.001253
[5]
Caponio N P, Goano M, Maio I, et al. Analysis and design criteria of three-section DBR tunable lasers. IEEE J Sel Areas Commun, 1990, 8:1203 doi: 10.1109/49.57827
[6]
Coldren L A. Monolithic tunable diode lasers. IEEE J Sel Topics Quantum Electron, 2000, 6(6):988 doi: 10.1109/2944.902147
[7]
Coldren L A, Fish G A, Akulova Y, et al. Tunable semiconductor lasers:a tutorial. J Lightwave Technol, 2004, 22(1):193 doi: 10.1109/JLT.2003.822207
[8]
Skogen E J, Barton J S, Denbaars S P, et al. A quantum-well-intermixing process for wavelength-agile photonic integrated circuits. IEEE J Sel Topics Quantum Electron, 2002, 8(4):863 doi: 10.1109/JSTQE.2002.800849
[9]
Zhang N, Rao W, Meng Z, et al. Linewidth study of the frequency-modulated laser based on the delayed self-heterodyne scheme. Opt Laser Technol, 2013, 45:267 doi: 10.1016/j.optlastec.2012.06.036
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2700 Times PDF downloads: 27 Times Cited by: 0 Times

    History

    Received: 01 March 2013 Revised: 21 March 2013 Online: Published: 01 October 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bin Niu, Hongyan Yu, Liqiang Yu, Daibing Zhou, Dan Lu, Lingjuan Zhao, Jiaoqing Pan, Wei Wang. A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors[J]. Journal of Semiconductors, 2013, 34(10): 104004. doi: 10.1088/1674-4926/34/10/104004 B Niu, H Y Yu, L Q Yu, D B Zhou, D Lu, L J Zhao, J Q Pan, W Wang. A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors[J]. J. Semicond., 2013, 34(10): 104004. doi: 10.1088/1674-4926/34/10/104004.Export: BibTex EndNote
      Citation:
      Bin Niu, Hongyan Yu, Liqiang Yu, Daibing Zhou, Dan Lu, Lingjuan Zhao, Jiaoqing Pan, Wei Wang. A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors[J]. Journal of Semiconductors, 2013, 34(10): 104004. doi: 10.1088/1674-4926/34/10/104004

      B Niu, H Y Yu, L Q Yu, D B Zhou, D Lu, L J Zhao, J Q Pan, W Wang. A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors[J]. J. Semicond., 2013, 34(10): 104004. doi: 10.1088/1674-4926/34/10/104004.
      Export: BibTex EndNote

      A 1.65 μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors

      doi: 10.1088/1674-4926/34/10/104004
      Funds:

      the National High Technology Research and Development Program of China 2012AA012203

      Project supported by the National High Technology Research and Development Program of China (Nos. 2011AA010303, 2012AA012203), the State Key Development Program for Basic Research of China (No. 2011CB301702), and the National Natural Science Foundation of China (Nos. 61021003, 61090392)

      the National High Technology Research and Development Program of China 2011AA010303

      the National Natural Science Foundation of China 61021003

      the State Key Development Program for Basic Research of China 2011CB301702

      the National Natural Science Foundation of China 61090392

      More Information
      • Corresponding author: Wang Wei, wwang@red.semi.ac.cn
      • Received Date: 2013-03-01
      • Revised Date: 2013-03-21
      • Published Date: 2013-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return