SEMICONDUCTOR INTEGRATED CIRCUITS

A reconfigurable 256 × 256 image sensor controller that is compatible for depth measurement

Zhe Chen, Shan Di, Cong Shi, Liyuan Liu and Nanjian Wu

+ Author Affiliations

 Corresponding author: Nanjian Wu, Email:nanjian@semi.ac.cn

PDF

Abstract: This paper presents an image sensor controller that is compatible for depth measurement, which is based on the continuous-wave modulation time-of-flight technology. The image sensor controller is utilized to generate reconfigurable control signals for a 256×256 high speed CMOS image sensor with a conventional image sensing mode and a depth measurement mode. The image sensor controller generates control signals for the pixel array to realize the rolling exposure and the correlated double sampling functions. An refined circuit design technique in the logic level is presented to reduce chip area and power consumption. The chip, with a size of 700×3380 μm2, is fabricated in a standard 0.18 μm CMOS image sensor process. The power consumption estimated by the synthesis tool is 65 mW under a 1.8 V supply voltage and a 100 MHz clock frequency. Our test results show that the image sensor controller functions properly.

Key words: CMOS image sensordepth measurementtime-of-flight



[1]
Coren S, Ward L M, Enns J T. Sensation and perception. Harcourt Brace College Publishers, 1994
[2]
Mikhail E M, Betherl J S, McGlone J C. Introduction to modern photogrammetry. New York: John Wiley & Sons, Inc. , 2001
[3]
Remondino F, Stoppa D. TOF range-imaging cameras. Springer, 2013
[4]
Spirig T, Seitz P, Vietze O, et al. The lock-in CCD-two-dimensional synchronous detection of light. IEEE J Quantum Electron, 1995, 31(9):1705 doi: 10.1109/3.406386
[5]
Lange R, Seitz P. Solid-state time-of-flight range camera. IEEE J Quantum Electron, 2001, 37(3):390 doi: 10.1109/3.910448
[6]
Foix S, Alenya G, Torras C. Lock-in time-of-flight (ToF) cameras:a survey. IEEE Sensors J, 2011, 11(9):1917 doi: 10.1109/JSEN.2010.2101060
[7]
Perenzoni M, Massari N, Stoppa D, et al. A 160×120-pixels range camera with in-pixel correlated double sampling and fixed-pattern noise correction. IEEE J Solid-State Circuits, 2011, 46(7):1672 doi: 10.1109/JSSC.2011.2144130
[8]
Jin K S, Kim J D K, Byongmin K, et al. A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition. IEEE J Solid-State Circuits, 2012, 47(11):2834 doi: 10.1109/JSSC.2012.2214179
[9]
Stoppa D, Massari N, Pancheri L, et al. A range image sensor based on 10-μm lock-in pixels in 0.18μm CMOS imaging technology. IEEE J Solid-State Circuits, 2011, 46(1):248 doi: 10.1109/JSSC.2010.2085870
[10]
Jin K S, Byongmin K, Kim J D K, et al. A 1920×10803. 65μm-pixel 2D/3D image sensor with split and binning pixel structure in 0. 11μm standard CMOS. ISSCC Dig Tech Papers, 2012: 396
[11]
Niclass C, Favi C, Kluter T, et al. A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J Solid-State Circuits, 2008, 43(12):2977 doi: 10.1109/JSSC.2008.2006445
[12]
Niclass C, Favi C, Kluter T, et al. Single-photon synchronous detection. IEEE J Solid-State Circuits, 2009, 44(7):1977 doi: 10.1109/JSSC.2009.2021920
[13]
Stoppa D, Pancheri L, Scandiuzzo M, et al. A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2007, 54(1):4 doi: 10.1109/TCSI.2006.888679
[14]
Niclass C, Soga M, Matsubara H, et al. A 100-m range 10-frame/s 340×96-pixel time-of-flight depth sensor in 0.18-μm CMOS. IEEE J Solid-State Circuits, 2013, 48(2):559 doi: 10.1109/JSSC.2012.2227607
[15]
Niclass C, Soga M, Matsubara H, et al. A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200×96-pixel time-of-flight depth sensor. IEEE J Solid-State Circuits, 2014, 49(1):315 doi: 10.1109/JSSC.2013.2284352
[16]
Cao Zhongxiang, Zhou Yangfan, Li Quanliang, et al. Design of pixel for high speed CMOS image sensors. International Image Sensor Workshop, 2013
Fig. 1.  ToF camera setup for depth measurement.

Fig. 2.  Schematic of the pixel.

Fig. 3.  Cross-section structure of the pixel.

Fig. 4.  Timing diagram of a single frame for 3D exposure.

Fig. 5.  Image sensor architecture.

Fig. 6.  Generating rolling shutter control signals for depth measurement.

Fig. 7.  Parameter registers in the image sensor controller.

Fig. 8.  State machine of the image sensor controller.

Fig. 9.  Microphotograph of the image sensor controller.

Fig. 10.  Photo of the test platform for the time-of-flight image sensor.

Fig. 11.  Waveform of the sensor output signals captured in the 3D mode.

Fig. 12.  (a) Test waveform captured by the SignalTap tool. (b) Simulated result with Matlab.

Table 1.   List of partial reconfigurable parameters of the image sensor controller.

[1]
Coren S, Ward L M, Enns J T. Sensation and perception. Harcourt Brace College Publishers, 1994
[2]
Mikhail E M, Betherl J S, McGlone J C. Introduction to modern photogrammetry. New York: John Wiley & Sons, Inc. , 2001
[3]
Remondino F, Stoppa D. TOF range-imaging cameras. Springer, 2013
[4]
Spirig T, Seitz P, Vietze O, et al. The lock-in CCD-two-dimensional synchronous detection of light. IEEE J Quantum Electron, 1995, 31(9):1705 doi: 10.1109/3.406386
[5]
Lange R, Seitz P. Solid-state time-of-flight range camera. IEEE J Quantum Electron, 2001, 37(3):390 doi: 10.1109/3.910448
[6]
Foix S, Alenya G, Torras C. Lock-in time-of-flight (ToF) cameras:a survey. IEEE Sensors J, 2011, 11(9):1917 doi: 10.1109/JSEN.2010.2101060
[7]
Perenzoni M, Massari N, Stoppa D, et al. A 160×120-pixels range camera with in-pixel correlated double sampling and fixed-pattern noise correction. IEEE J Solid-State Circuits, 2011, 46(7):1672 doi: 10.1109/JSSC.2011.2144130
[8]
Jin K S, Kim J D K, Byongmin K, et al. A CMOS image sensor based on unified pixel architecture with time-division multiplexing scheme for color and depth image acquisition. IEEE J Solid-State Circuits, 2012, 47(11):2834 doi: 10.1109/JSSC.2012.2214179
[9]
Stoppa D, Massari N, Pancheri L, et al. A range image sensor based on 10-μm lock-in pixels in 0.18μm CMOS imaging technology. IEEE J Solid-State Circuits, 2011, 46(1):248 doi: 10.1109/JSSC.2010.2085870
[10]
Jin K S, Byongmin K, Kim J D K, et al. A 1920×10803. 65μm-pixel 2D/3D image sensor with split and binning pixel structure in 0. 11μm standard CMOS. ISSCC Dig Tech Papers, 2012: 396
[11]
Niclass C, Favi C, Kluter T, et al. A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J Solid-State Circuits, 2008, 43(12):2977 doi: 10.1109/JSSC.2008.2006445
[12]
Niclass C, Favi C, Kluter T, et al. Single-photon synchronous detection. IEEE J Solid-State Circuits, 2009, 44(7):1977 doi: 10.1109/JSSC.2009.2021920
[13]
Stoppa D, Pancheri L, Scandiuzzo M, et al. A CMOS 3-D imager based on single photon avalanche diode. IEEE Trans Circuits Syst Ⅰ, Reg Papers, 2007, 54(1):4 doi: 10.1109/TCSI.2006.888679
[14]
Niclass C, Soga M, Matsubara H, et al. A 100-m range 10-frame/s 340×96-pixel time-of-flight depth sensor in 0.18-μm CMOS. IEEE J Solid-State Circuits, 2013, 48(2):559 doi: 10.1109/JSSC.2012.2227607
[15]
Niclass C, Soga M, Matsubara H, et al. A 0.18-μm CMOS SoC for a 100-m-range 10-frame/s 200×96-pixel time-of-flight depth sensor. IEEE J Solid-State Circuits, 2014, 49(1):315 doi: 10.1109/JSSC.2013.2284352
[16]
Cao Zhongxiang, Zhou Yangfan, Li Quanliang, et al. Design of pixel for high speed CMOS image sensors. International Image Sensor Workshop, 2013
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2576 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 18 February 2014 Revised: 21 April 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhe Chen, Shan Di, Cong Shi, Liyuan Liu, Nanjian Wu. A reconfigurable 256 × 256 image sensor controller that is compatible for depth measurement[J]. Journal of Semiconductors, 2014, 35(10): 105007. doi: 10.1088/1674-4926/35/10/105007 Z Chen, S Di, C Shi, L Y Liu, N J Wu. A reconfigurable 256 × 256 image sensor controller that is compatible for depth measurement[J]. J. Semicond., 2014, 35(10): 105007. doi: 10.1088/1674-4926/35/10/105007.Export: BibTex EndNote
      Citation:
      Zhe Chen, Shan Di, Cong Shi, Liyuan Liu, Nanjian Wu. A reconfigurable 256 × 256 image sensor controller that is compatible for depth measurement[J]. Journal of Semiconductors, 2014, 35(10): 105007. doi: 10.1088/1674-4926/35/10/105007

      Z Chen, S Di, C Shi, L Y Liu, N J Wu. A reconfigurable 256 × 256 image sensor controller that is compatible for depth measurement[J]. J. Semicond., 2014, 35(10): 105007. doi: 10.1088/1674-4926/35/10/105007.
      Export: BibTex EndNote

      A reconfigurable 256 × 256 image sensor controller that is compatible for depth measurement

      doi: 10.1088/1674-4926/35/10/105007
      More Information
      • Corresponding author: Email:nanjian@semi.ac.cn
      • Received Date: 2014-02-18
      • Revised Date: 2014-04-21
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return