SEMICONDUCTOR PHYSICS

Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well

Ziliang Cai, Ming Li and Libo Fan

+ Author Affiliations

PDF

Abstract: The Rashba coefficient and Rashba spin splitting for the first subband of the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well (QW) with various sheet carrier densities (Ns) are calculated by solving Schrödinger and Poisson equations self-consistently. The Rashba spin splitting for the first subband at the Fermi level is considerable and increases evidently with Ns, since the Rashba coefficient, especially the Fermi wave vector increase rapidly. With increasing Ns, the peak of the wave function for the first subband moves towards the left heterointerface, and the average electric field in the well increases, so the two dominant contributions coming from the well and the heterointerface increase. Therefore, the strong polarization electric field and high density of 2DEG in ó-nitrides heterostructures are of great importance to ǁ and make the Rashba spin splitting in AlGaN/GaN QWs comparable to that of narrow-gap Ⅲ-Ⅴ materials. The results indicate that the sheet carrier density is an important parameter affecting the Rashba coefficient and Rashba spin splitting in AlGaN/GaN QWs, showing the possible application of this material system in spintronic devices.

Key words: Rashba spin splittingintersubband spin-orbit couplingself-consistent calculation2DEG



[1]
Awshalom D D, Loss D, Samarth N. Semiconductor spintronics and quantum computation. Berlin:Springer, 2002
[2]
Žuti I, Fabian J, Das Sarma S. Spintronics:fundamentals and applications. Rev Mod Phys, 2004, 76:323 doi: 10.1103/RevModPhys.76.323
[3]
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1989, 56:665 doi: 10.1063/1.102730
[4]
He X W, Shen B, Tang Y Q, et al. Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures under uniaxial strain. Appl Phys Lett, 2007, 91:071912 doi: 10.1063/1.2768918
[5]
Ikai Lo, Gau M H, Tsai J K, et al. Anomalous k-dependent spin splitting in wurtzite AlxGa1-xN/GaN heterostructures. Phys Rev B, 2007, 75:245307 doi: 10.1103/PhysRevB.75.245307
[6]
Koga T, Nitta J, Akazaki T, et al. Rashba Spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys Rev Lett, 2002, 89:046801 doi: 10.1103/PhysRevLett.89.046801
[7]
Du J, Li Z W, Zhang P. Effect of external magnetic field on the spin-dependent transport and shot noise of a ferromagnetic/semiconductor/ferromagnetic heterojunction with double DŽ tunnel barrier. Journal of Semiconductors, 2008, 29(6):1147 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=08022701&flag=1
[8]
Liu L S, Liu S, Wang W X, et al. Study of electron spin relaxation time in GaAs (110) quantum wells. Chinese Journal of Semiconductors, 2007, 28(6):856 doi: 10.1088/1367-2630/16/4/045008/meta
[9]
Litvinov V I. Electron spin splitting in polarization-doped group-ó nitrides. Phys Rev B, 2003, 68:155314 doi: 10.1103/PhysRevB.68.155314
[10]
Ganichev S D, Bel'kov V V, Golub L E, et al. Experimental separation of Rashba and dresselhaus spin splittings in semiconductor quantum wells. Phys Rev Lett, 2004, 92:256601 doi: 10.1103/PhysRevLett.92.256601
[11]
Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Phys Rev, 1955, 100:580 doi: 10.1103/PhysRev.100.580
[12]
Bychkov Y A, Rashba E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C, 1984, 17:6039 doi: 10.1088/0022-3719/17/33/015
[13]
Wolf S A, Awschalom D D, Buhrman R A et al. Spintronics:a spin-based electronics vision for the future. Science, 2001, 294:1488
[14]
De Andrada e Silva E A, La Rocca G C, Bassani F. Spin-split subbands and magneto-oscillations in ó-V asymmetric heterostructures. Phys Rev B, 1994, 50:8523 doi: 10.1103/PhysRevB.50.8523
[15]
De Andrada e Silva E A, La Rocca G C, Bassani F. Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells. Phys Rev B, 1997, 55:16293 doi: 10.1103/PhysRevB.55.16293
[16]
Winkler R. Spin-orbit coupling effects in two-dimensional electron and hole systems. Berlin:Springer-Verlag, 2003
[17]
Litvinov V I. Polarization-induced Rashba spin-orbit coupling in structurally symmetric ó-nitride quantum wells. Appl Phys Lett, 2006, 89:222108 doi: 10.1063/1.2397559
[18]
Li M, Zhang R, Zhang Z, et al. Rashba spin splitting for the first two subbands in AlxGa1-xN/GaN heterostructures. Superlattices Microstr, 2010, 47:522 doi: 10.1016/j.spmi.2010.01.006
[19]
Li M, Sun G, Fan L B. A new method to calculate the Rashba spin splitting in ó-nitride heterostructures. Chin Phys Lett, 2012, 29(12):127104 doi: 10.1088/0256-307X/29/12/127104
[20]
Zheng Z W, Shen B, Zhang R, et al. Occupation of the double subbands by the two-dimensional electron gas in the triangular quantum well at AlxGa1-xN/GaN heterostructures. Phys Rev B, 2000, 62:R7739 http://adsabs.harvard.edu/abs/2003PhyE...19..321K
[21]
Ikai Lo, Tsai J K, Yao W J, et al. Spin splitting in modulation-doped AlxGa1-xN/GaN heterostructures. Phys Rev B, 2002, 65:R161306 doi: 10.1088/0022-3719/18/29/013/meta
[22]
Luo J, Munekata H, Fang F F, et al. Observation of the zero-field spin splitting of the ground electron subband in GaSb-InAs-GaSb quantum wells. Phys Rev B, 1988, 38:R10142 doi: 10.1103/PhysRevB.38.10142
[23]
Das B, Miller D C, Datta S, et al. Evidence for spin splitting in InxGa1-xAs/In0.52Al0.48As heterostructures as B → 0. Phys Rev B, 1989, 39:R1411 doi: 10.1103/PhysRevB.39.1411
[24]
Weber W, Ganichev S D, Danilov S N, et al. Demonstration of Rashba spin splitting in GaN-based heterostructures. Appl Phys Lett, 2005, 87:262106 doi: 10.1063/1.2158024
[25]
Zhang Z, Zhang R, Xie Z L, et al. The observation of surface circular photogalvanic effect in InN films. Solid State Commun, 2009, 149:1004 doi: 10.1016/j.ssc.2009.04.008
[26]
Tang N, Shen B, Wang M J, et al. Beating patterns in the oscillatory magnetoresistance originated from zero-field spin splitting in AlxGa1-xN/GaN heterostructures. Appl Phys Lett, 2006, 88:172112 doi: 10.1063/1.2197313
[27]
Cho K S, Liang C T, Chen Y F, et al. Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures. Phys Rev B, 2007, 75:085327 doi: 10.1103/PhysRevB.75.085327
[28]
Li M. Dependence of spin-orbit parameters in AlxGa1-xN/GaN quantum wells on the Al composition of the barrier. Commun Theor Phys, 2013, 60:119 doi: 10.1088/0253-6102/60/1/17
[29]
Li M, Lv Y H, Yang B H, et al. Effect of well thickness on the Rashba spin splitting and intersubband spin-orbit coupling in AlGaN/GaN/AlGaN quantum wells with two subbands. Solid State Commun, 2011, 151:1958 doi: 10.1016/j.ssc.2011.09.013
[30]
Li M, Zhang R, Liu B, et al. Study of Rashba spin splitting and intersubband spin-orbit coupling effect in AlGaN/GaN quantum wells. Acta Phys Sin, 2012, 61(2):027103
[31]
Rafael S C, Bernardes E, Egues J C, et al. Intersubband-induced spin-orbit interaction in quantum wells. Phys Rev B, 2008, 78:155313 doi: 10.1103/PhysRevB.78.155313
[32]
Bernardes E, Schliemann J, Lee M, et al. Spin-orbit interaction in symmetric wells with two subbands. Phys Rev Lett, 2007, 99:076603 doi: 10.1103/PhysRevLett.99.076603
[33]
Bernardes E, Schliemann J, Lee M, et al. Lamari S. Rashba effect in inversion layers on p-type InAs MOSFET's. Phys Rev B, 2001, 64:245340 doi: 10.1103/PhysRevB.64.245340
[34]
Bernardes E, Schliemann J, Lee M, et al. Effect of the doping concentration on the zero-field spin splitting and Rashba parameter in a p-InAs MOSFET. Phys Rev B, 2003, 67:165329 doi: 10.1103/PhysRevB.67.165329
[35]
Winkler R, Rössler U. General approach to the envelope-function approximation based on a quadrature method. Phys Rev B, 1993, 48:8918 doi: 10.1103/PhysRevB.48.8918
[36]
Zhang X C, Pfeuffer-Jeschke A, Ortner K, et al. Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure. Phys Rev B, 2001, 63:245305 doi: 10.1103/PhysRevB.63.245305
[37]
Yang W, Chang K. Rashba spin splitting in biased semiconductor quantum wells. Phys Rev B, 2006, 73:113303 doi: 10.1103/PhysRevB.73.113303
[38]
Yang W, Chang K. Nonlinear Rashba model and spin relaxation in quantum wells. Phys Rev B, 2006, 74:193314 doi: 10.1103/PhysRevB.74.193314
[39]
Kumagai M, Chuang S L, Ando H. Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors. Phys Rev B, 1998, 57:15303 doi: 10.1103/PhysRevB.57.15303
[40]
Suzuki M, Uenoyama T, Yanase A. First-principles calculations of effective-mass parameters of AlN and GaN. Phys Rev B, 1995, 52:8132 doi: 10.1103/PhysRevB.52.8132
[41]
Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys, 2000, 87:334 doi: 10.1063/1.371866
[42]
Ambacher O. Piezoelectric actuation of (GaN/)AlGaN/GaN heterostructures. J Appl Phys, 1999, 85:3222 doi: 10.1063/1.369664
[43]
Wan S P, Xia J B, Chang K. Effects of piezoelectricity and spontaneous polarization on electronic and optical properties of wurtzite ó-V nitride quantum wells. J Appl Phys, 2001, 90:6210 doi: 10.1063/1.1413714
[44]
Tan I H, Snider G L, Chang L D, et al. A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh. J Appl Phys, 1990, 68:4071 doi: 10.1063/1.346245
[45]
Sandoval M A T, da Silva A F. Variational analysis of the Rashba splitting in ó-V semiconductor inversion layers. Phys Rev B, 2011, 83:235315 doi: 10.1103/PhysRevB.83.235315
[46]
Tang N, Shen B, Zheng Z W, et al. Magnetoresistance oscillations induced by intersubband scattering of two-dimensional electron gas in Al0.22Ga0.78N/GaN heterostructures. J Appl Phys, 2003, 94:5420 doi: 10.1063/1.1606507
[47]
Zheng Z W, Shen B, Jiang C P, et al. Multisubband transport of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures. J Appl Phys, 2003, 93:1651 doi: 10.1063/1.1536720
Fig. 1.  Potential profile of the conduction band, and the wave functionfor the first confined state in the Al0:5Ga0:5N/GaN/Al0.5Ga0.5N QWwith various Ns(1011 cm-2

Fig. 2.  The average position of electrons in the first subband as a function of Ns

Fig. 3.  Dependence of the first confined energy level, Fermi level, andthe Fermi wave vector as a function of Ns

Fig. 4.  The electric field at the left heterointerface as a function of Ns

Fig. 5.  The electric field at the left heterointerface as a function of NsThe Rashba coefficient for the first subband and its individual contributions as a function of Ns

Fig. 6.  Rashba spin splitting for the first subband at the Fermi level ofthe Al0.5Ga0.5N/GaN/Al0.5Ga0.5N QW as a function of Ns

[1]
Awshalom D D, Loss D, Samarth N. Semiconductor spintronics and quantum computation. Berlin:Springer, 2002
[2]
Žuti I, Fabian J, Das Sarma S. Spintronics:fundamentals and applications. Rev Mod Phys, 2004, 76:323 doi: 10.1103/RevModPhys.76.323
[3]
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1989, 56:665 doi: 10.1063/1.102730
[4]
He X W, Shen B, Tang Y Q, et al. Circular photogalvanic effect of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures under uniaxial strain. Appl Phys Lett, 2007, 91:071912 doi: 10.1063/1.2768918
[5]
Ikai Lo, Gau M H, Tsai J K, et al. Anomalous k-dependent spin splitting in wurtzite AlxGa1-xN/GaN heterostructures. Phys Rev B, 2007, 75:245307 doi: 10.1103/PhysRevB.75.245307
[6]
Koga T, Nitta J, Akazaki T, et al. Rashba Spin-orbit coupling probed by the weak antilocalization analysis in InAlAs/InGaAs/InAlAs quantum wells as a function of quantum well asymmetry. Phys Rev Lett, 2002, 89:046801 doi: 10.1103/PhysRevLett.89.046801
[7]
Du J, Li Z W, Zhang P. Effect of external magnetic field on the spin-dependent transport and shot noise of a ferromagnetic/semiconductor/ferromagnetic heterojunction with double DŽ tunnel barrier. Journal of Semiconductors, 2008, 29(6):1147 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=08022701&flag=1
[8]
Liu L S, Liu S, Wang W X, et al. Study of electron spin relaxation time in GaAs (110) quantum wells. Chinese Journal of Semiconductors, 2007, 28(6):856 doi: 10.1088/1367-2630/16/4/045008/meta
[9]
Litvinov V I. Electron spin splitting in polarization-doped group-ó nitrides. Phys Rev B, 2003, 68:155314 doi: 10.1103/PhysRevB.68.155314
[10]
Ganichev S D, Bel'kov V V, Golub L E, et al. Experimental separation of Rashba and dresselhaus spin splittings in semiconductor quantum wells. Phys Rev Lett, 2004, 92:256601 doi: 10.1103/PhysRevLett.92.256601
[11]
Dresselhaus G. Spin-orbit coupling effects in zinc blende structures. Phys Rev, 1955, 100:580 doi: 10.1103/PhysRev.100.580
[12]
Bychkov Y A, Rashba E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C, 1984, 17:6039 doi: 10.1088/0022-3719/17/33/015
[13]
Wolf S A, Awschalom D D, Buhrman R A et al. Spintronics:a spin-based electronics vision for the future. Science, 2001, 294:1488
[14]
De Andrada e Silva E A, La Rocca G C, Bassani F. Spin-split subbands and magneto-oscillations in ó-V asymmetric heterostructures. Phys Rev B, 1994, 50:8523 doi: 10.1103/PhysRevB.50.8523
[15]
De Andrada e Silva E A, La Rocca G C, Bassani F. Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells. Phys Rev B, 1997, 55:16293 doi: 10.1103/PhysRevB.55.16293
[16]
Winkler R. Spin-orbit coupling effects in two-dimensional electron and hole systems. Berlin:Springer-Verlag, 2003
[17]
Litvinov V I. Polarization-induced Rashba spin-orbit coupling in structurally symmetric ó-nitride quantum wells. Appl Phys Lett, 2006, 89:222108 doi: 10.1063/1.2397559
[18]
Li M, Zhang R, Zhang Z, et al. Rashba spin splitting for the first two subbands in AlxGa1-xN/GaN heterostructures. Superlattices Microstr, 2010, 47:522 doi: 10.1016/j.spmi.2010.01.006
[19]
Li M, Sun G, Fan L B. A new method to calculate the Rashba spin splitting in ó-nitride heterostructures. Chin Phys Lett, 2012, 29(12):127104 doi: 10.1088/0256-307X/29/12/127104
[20]
Zheng Z W, Shen B, Zhang R, et al. Occupation of the double subbands by the two-dimensional electron gas in the triangular quantum well at AlxGa1-xN/GaN heterostructures. Phys Rev B, 2000, 62:R7739 http://adsabs.harvard.edu/abs/2003PhyE...19..321K
[21]
Ikai Lo, Tsai J K, Yao W J, et al. Spin splitting in modulation-doped AlxGa1-xN/GaN heterostructures. Phys Rev B, 2002, 65:R161306 doi: 10.1088/0022-3719/18/29/013/meta
[22]
Luo J, Munekata H, Fang F F, et al. Observation of the zero-field spin splitting of the ground electron subband in GaSb-InAs-GaSb quantum wells. Phys Rev B, 1988, 38:R10142 doi: 10.1103/PhysRevB.38.10142
[23]
Das B, Miller D C, Datta S, et al. Evidence for spin splitting in InxGa1-xAs/In0.52Al0.48As heterostructures as B → 0. Phys Rev B, 1989, 39:R1411 doi: 10.1103/PhysRevB.39.1411
[24]
Weber W, Ganichev S D, Danilov S N, et al. Demonstration of Rashba spin splitting in GaN-based heterostructures. Appl Phys Lett, 2005, 87:262106 doi: 10.1063/1.2158024
[25]
Zhang Z, Zhang R, Xie Z L, et al. The observation of surface circular photogalvanic effect in InN films. Solid State Commun, 2009, 149:1004 doi: 10.1016/j.ssc.2009.04.008
[26]
Tang N, Shen B, Wang M J, et al. Beating patterns in the oscillatory magnetoresistance originated from zero-field spin splitting in AlxGa1-xN/GaN heterostructures. Appl Phys Lett, 2006, 88:172112 doi: 10.1063/1.2197313
[27]
Cho K S, Liang C T, Chen Y F, et al. Spin-dependent photocurrent induced by Rashba-type spin splitting in Al0.25Ga0.75N/GaN heterostructures. Phys Rev B, 2007, 75:085327 doi: 10.1103/PhysRevB.75.085327
[28]
Li M. Dependence of spin-orbit parameters in AlxGa1-xN/GaN quantum wells on the Al composition of the barrier. Commun Theor Phys, 2013, 60:119 doi: 10.1088/0253-6102/60/1/17
[29]
Li M, Lv Y H, Yang B H, et al. Effect of well thickness on the Rashba spin splitting and intersubband spin-orbit coupling in AlGaN/GaN/AlGaN quantum wells with two subbands. Solid State Commun, 2011, 151:1958 doi: 10.1016/j.ssc.2011.09.013
[30]
Li M, Zhang R, Liu B, et al. Study of Rashba spin splitting and intersubband spin-orbit coupling effect in AlGaN/GaN quantum wells. Acta Phys Sin, 2012, 61(2):027103
[31]
Rafael S C, Bernardes E, Egues J C, et al. Intersubband-induced spin-orbit interaction in quantum wells. Phys Rev B, 2008, 78:155313 doi: 10.1103/PhysRevB.78.155313
[32]
Bernardes E, Schliemann J, Lee M, et al. Spin-orbit interaction in symmetric wells with two subbands. Phys Rev Lett, 2007, 99:076603 doi: 10.1103/PhysRevLett.99.076603
[33]
Bernardes E, Schliemann J, Lee M, et al. Lamari S. Rashba effect in inversion layers on p-type InAs MOSFET's. Phys Rev B, 2001, 64:245340 doi: 10.1103/PhysRevB.64.245340
[34]
Bernardes E, Schliemann J, Lee M, et al. Effect of the doping concentration on the zero-field spin splitting and Rashba parameter in a p-InAs MOSFET. Phys Rev B, 2003, 67:165329 doi: 10.1103/PhysRevB.67.165329
[35]
Winkler R, Rössler U. General approach to the envelope-function approximation based on a quadrature method. Phys Rev B, 1993, 48:8918 doi: 10.1103/PhysRevB.48.8918
[36]
Zhang X C, Pfeuffer-Jeschke A, Ortner K, et al. Rashba splitting in n-type modulation-doped HgTe quantum wells with an inverted band structure. Phys Rev B, 2001, 63:245305 doi: 10.1103/PhysRevB.63.245305
[37]
Yang W, Chang K. Rashba spin splitting in biased semiconductor quantum wells. Phys Rev B, 2006, 73:113303 doi: 10.1103/PhysRevB.73.113303
[38]
Yang W, Chang K. Nonlinear Rashba model and spin relaxation in quantum wells. Phys Rev B, 2006, 74:193314 doi: 10.1103/PhysRevB.74.193314
[39]
Kumagai M, Chuang S L, Ando H. Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors. Phys Rev B, 1998, 57:15303 doi: 10.1103/PhysRevB.57.15303
[40]
Suzuki M, Uenoyama T, Yanase A. First-principles calculations of effective-mass parameters of AlN and GaN. Phys Rev B, 1995, 52:8132 doi: 10.1103/PhysRevB.52.8132
[41]
Ambacher O, Foutz B, Smart J, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J Appl Phys, 2000, 87:334 doi: 10.1063/1.371866
[42]
Ambacher O. Piezoelectric actuation of (GaN/)AlGaN/GaN heterostructures. J Appl Phys, 1999, 85:3222 doi: 10.1063/1.369664
[43]
Wan S P, Xia J B, Chang K. Effects of piezoelectricity and spontaneous polarization on electronic and optical properties of wurtzite ó-V nitride quantum wells. J Appl Phys, 2001, 90:6210 doi: 10.1063/1.1413714
[44]
Tan I H, Snider G L, Chang L D, et al. A self-consistent solution of Schrödinger-Poisson equations using a nonuniform mesh. J Appl Phys, 1990, 68:4071 doi: 10.1063/1.346245
[45]
Sandoval M A T, da Silva A F. Variational analysis of the Rashba splitting in ó-V semiconductor inversion layers. Phys Rev B, 2011, 83:235315 doi: 10.1103/PhysRevB.83.235315
[46]
Tang N, Shen B, Zheng Z W, et al. Magnetoresistance oscillations induced by intersubband scattering of two-dimensional electron gas in Al0.22Ga0.78N/GaN heterostructures. J Appl Phys, 2003, 94:5420 doi: 10.1063/1.1606507
[47]
Zheng Z W, Shen B, Jiang C P, et al. Multisubband transport of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures. J Appl Phys, 2003, 93:1651 doi: 10.1063/1.1536720
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2418 Times PDF downloads: 20 Times Cited by: 0 Times

    History

    Received: 19 February 2014 Revised: 28 March 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ziliang Cai, Ming Li, Libo Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well[J]. Journal of Semiconductors, 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002 Z L Cai, M Li, L B Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well[J]. J. Semicond., 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002.Export: BibTex EndNote
      Citation:
      Ziliang Cai, Ming Li, Libo Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well[J]. Journal of Semiconductors, 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002

      Z L Cai, M Li, L B Fan. Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well[J]. J. Semicond., 2014, 35(9): 092002. doi: 10.1088/1674-4926/35/9/092002.
      Export: BibTex EndNote

      Sheet carrier density dependent Rashba spin splitting in the Al0.5Ga0.5N/GaN/Al0.5Ga0.5N quantum well

      doi: 10.1088/1674-4926/35/9/092002
      Funds:

      the National Natural Science Foundation of China and the Program for Science 61306012

      Technology Innovation Talents in Universities of Henan Province 2012HASTIT033

      the National Natural Science Foundation of China and the Program for Science 11004168

      Project supported by the National Natural Science Foundation of China(Nos.61306012, 11004168) and the Program for Science & Technology Innovation Talents in Universities of Henan Province(No.2012HASTIT033)

      More Information
      • Author Bio:

        Ming Li Li Ming, Email:mingli245@163.com

      • Received Date: 2014-02-19
      • Revised Date: 2014-03-28
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return