REVIEWS

Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution

Hao Fu and Aiwei Tang

+ Author Affiliations

 Corresponding author: A W Tang, awtang@bjtu.edu.cn

PDF

Turn off MathJax

Abstract: Photocatalytic hydrogen evolution is one of the most promising ways to solve environmental problems and produce a sustainable energy source. To date, different types of photocatalysts have been developed and widely used in photocatalytic hydrogen evolution. Recently, multinary copper chalcogenides have attracted much attention and exhibited potential applications in photocatalytic hydrogen evolution due to their composition-tunable band gaps, diverse structures and environmental-benign characteristics. In this review, some progress on the synthesis and photocatalytic hydrogen evolution of multinary copper chalcogenide nanocrystals (NCs) was summarized. In particular, considerable attention was paid to the rational design and dimensional or structural regulation of multinary copper chalcogenide NCs. Importantly, the photocatalytic hydrogen evolution of multinary copper chalcogenide NCs were reviewed from the aspects of energy level structures, crystal facets, morphology as well as composition. Finally, the current challenges and future perspectives of copper chalcogenide were proposed.

Key words: photocatalytic hydrogen evolutionnanocrystalscopper chalcogenides



[1]
Chow J. Energy resources and global development. Science, 2003, 302(5650), 1528 doi: 10.1126/science.1091939
[2]
Dincer I, Rosen M A. Energy, environment and sustainable development. Appl Energy, 1999, 64(1), 427 doi: 10.1016/S0306-2619(99)00111-7
[3]
Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95(1), 69 doi: 10.1021/cr00033a004
[4]
Armaroli N, Balzani V. The future of energy supply: Challenges and opportunities. Angew Chem Int Ed, 2007, 46, 52 doi: 10.1002/anie.200602373
[5]
L i, X, Yu J G, Low J X, et al. Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A, 2015, 3, 2485 doi: 10.1039/C4TA04461D
[6]
Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev, 2010, 11, 6474 doi: 10.1021/cr100246c
[7]
Muradov N Z, Veziroglu T N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int J Hydrogen Energy, 2008, 33(23), 6804 doi: 10.1016/j.ijhydene.2008.08.054
[8]
Takanabe K, Domen K. Toward visible light response: Overall water splitting using heterogeneous photocatalysts. Green, 2011, 1(4), 313 doi: 10.1515/GREEN.2011.030
[9]
Xu C Q, Anusuyadevi P R, Aymonier C, et al. Nanostructured materials for photocatalysis. Chem Soc Rev, 2019, 48, 3868 doi: 10.1039/C9CS00102F
[10]
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38, 253 doi: 10.1039/B800489G
[11]
Shinde S S, Bhosale C H, Rajpure K Y. Solar light assisted photocatalysis of water using a zinc oxide semiconductor. J Semicond, 2013, 34(4), 043002 doi: 10.1088/1674-4926/34/4/043002
[12]
Huang Y B, Liu J, Deng Y C, et al. The application of perovskite materials in solar water splitting. J Semicond, 2020, 41(1), 011701 doi: 10.1088/1674-4926/41/1/011701
[13]
Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem Soc Rev, 2012, 41(2), 782 doi: 10.1039/C1CS15172J
[14]
Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev, 2014, 114(19), 9919 doi: 10.1021/cr5001892
[15]
Peng L, Liu Y, Li Y, et al. Fluorine-assisted structural engineering of colloidal anatase TiO2 hierarchical nanocrystals for enhanced photocatalytic hydrogen production. Nanoscale, 2019, 11, 22575 doi: 10.1039/C9NR06595D
[16]
Xu H, Reunchan P, Ouyang S, et al. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution. Chem Mater, 2013, 25(3), 405 doi: 10.1021/cm303502b
[17]
Preethi V, Kanmani S. Photocatalytic hydrogen production. Mater Sci Semicond Process, 2013, 16, 561 doi: 10.1016/j.mssp.2013.02.001
[18]
Jang J S, Kim H G, Borse P H. Simultaneous hydrogen production and decomposition of dissolved in alkaline water over composite photocatalysts under visible light irradiation. Int J Hydrogen Energy, 2007, 32, 4786 doi: 10.1016/j.ijhydene.2007.06.026
[19]
Costi R, Saunders A E, Elmalem E, et al. Visible light-induced charge retention and photocatalysis with hybrid CdSe–Au nanodumbbells. Nano Lett, 2008, 8(2), 637 doi: 10.1021/nl0730514
[20]
Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110(11), 6503 doi: 10.1021/cr1001645
[21]
Coughlan C, Ibánez M, Dobrozhan O, et al. Compound copper chalcogenide nanocrystals. Chem Rev, 2017, 117(9), 5865 doi: 10.1021/acs.chemrev.6b00376
[22]
Sun S D, Li P J, Liang S H, et al. Diversified copper sulfide (Cu2– xS) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. Nanoscale, 2017, 9(32), 11357 doi: 10.1039/C7NR03828C
[23]
Tang A W, Hu Z L, Yin Z, et al. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase. Dalton Trans, 2015, 44(19), 9251 doi: 10.1039/C5DT01111F
[24]
Trizio D L, Manna L. Forging colloidal nanostructures via cation exchange reactions. Chem Rev, 2016, 116, 10852 doi: 10.1021/acs.chemrev.5b00739
[25]
Chen B K, Chang S, Li D Y, et al. Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem Mater, 2015, 27, 5949 doi: 10.1021/acs.chemmater.5b01971
[26]
Hages C J, Levcenco S, Miskin C K, et al. Improved performance of Ge-alloyed CZTGeSSe thin-film solar cells through control of elemental losses. Prog Photovolt Res Appl, 2013, 23(3), 376 doi: 10.1002/pip.2442
[27]
Wang L J, Guan Z Y, Tang A W. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging. J Nanopart Res, 2020, 22(1), 1 doi: 10.1007/s11051-019-4718-8
[28]
Guan Z Y, Tang A W, Lv P W, et al. new insights into the formation and color-tunable optical properties of multinary Cu–In–Zn-based chalcogenide semiconductor nanocrystals. Adv Opt Mater, 2018, 6, 1701389 doi: 10.1002/adom.201701389
[29]
Guan Z Y, Chen F, Liu Z Y, et al. Compositional engineering of multinary Cu–In–Zn-based semiconductor nanocrystals for efficient and solution-processed red-emitting quantum-dot light-emitting diodes. Organ Electron, 2019, 74, 46 doi: 10.1016/j.orgel.2019.06.024
[30]
Kim B Y, Kim J H, Lee K H, et al. Synthesis of highly efficient azure-to-blue-emitting Zn –Cu –Ga –S quantum dots. Chem Commun, 2017, 53(29), 4088 doi: 10.1039/C7CC00952F
[31]
Li X, Tang A W, et al. Effects of alkanethiols chain length on the synthesis of Cu2– xS nanocrystals: phase, morphology, plasmonic properties and electrical conductivity. RSC Adv, 2014, 4, 54547 doi: 10.1039/C4RA08707K
[32]
Ye H H, Tang A W, Yang C H, et al. Synthesis of Cu2– xS nanocrystals induced by foreign metal ions: phase and morphology transformation and localized surface plasmon resonance. CrystEngComm, 2014, 16(37), 8684 doi: 10.1039/C4CE00945B
[33]
Zhu D X, Tang A W, Ye H H, et al. Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time. J Mater Chem C, 2015, 3(26), 6686 doi: 10.1039/C5TC01310K
[34]
Zhu D X, Tang A W, Peng L, et al. Tuning the plasmonic resonance of Cu2− xS nanocrystals: effects of the crystal phase, morphology and surface ligands. J Mater Chem C, 2016, 4(22), 4880 doi: 10.1039/C6TC00980H
[35]
Chen M M, Xue H G, Guo S P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coordin Chem Rev, 2018, 368, 115 doi: 10.1016/j.ccr.2018.04.014
[36]
Nethravathi C, Ragesh R N, Rajamathi J T, et al. Microwave-assisted synthesis of porous aggregates of CuS nanoparticles for sunlight photocatalysis. ACS Omega, 2019, 4(3), 4825 doi: 10.1021/acsomega.8b03288
[37]
Kobayakawa K, Teranishi A, Tsurumaki T, et al. Photocatalytic activity of CuInS2 and CuIn5S8. Electrochim Acta, 1992, 37(3), 465 doi: 10.1016/0013-4686(92)87037-Z
[38]
Kaga H, Tsutsui Y, Nagane A, et al. An effect of Ag(I)-substitution at Cu sites in CuGaS2 on photocatalytic and photoelectrochemical properties for solar hydrogen evolution. J Mater Chem A, 2015, 3(43), 21815 doi: 10.1039/C5TA04756K
[39]
Fan X B, Yu S, Zhan F, et al. Nonstoichiometric Cu xIn yS quantum dots for efficient photocatalytic hydrogen evolution. ChemSusChem, 2017, 10(24), 4833 doi: 10.1002/cssc.201701950
[40]
Yi L X, Liu Y Y, Yang N L, et al. One dimensional CuInS2–ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy Environ Sci, 2013, 6(3), 835 doi: 10.1039/c3ee24176a
[41]
Yu Z J, Chen Z, Chen Y G, et al. Photocatalytic hydrogenation of nitroarenes using Cu1.94S–Zn0.23Cd0.77S heteronanorods. Nano Res, 2018, 11(7), 3730 doi: 10.1007/s12274-017-1944-1
[42]
Tan L L, Liu Y H, Mao B D, et al. Effective bandgap narrowing of Cu–In–Zn–S quantum dots for photocatalytic H2 production via cocatalyst-alleviated charge recombination. Inorgan Chem Front, 2018, 5(1), 258 doi: 10.1039/C7QI00607A
[43]
Kandiel T A, Anjum D H, Sautet P, et al. Electronic structure and photocatalytic activity of wurtzite Cu –Ga –S nanocrystals and their Zn substitution. J Mater Chem A, 2015, 3(16), 8896 doi: 10.1039/C5TA01552A
[44]
Yu X L, An X Q, Shavel A, et al. The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1− xGa xS2 nanocrystals. J Mater Chem A, 2014, 2(31), 12317 doi: 10.1039/C4TA01315H
[45]
Zhao M S, Huang F, Lin H, et al. CuGaS2–ZnS p–n nanoheterostructures: a promising visible light photo-catalyst for water-splitting hydrogen production. Nanoscale, 2016, 8(37), 16670 doi: 10.1039/C6NR05002F
[46]
Kuzuya T, Hamanaka Y, Itoh K, et al. Phase control and its mechanism of CuInS2 nanoparticles. J Colloid Interface Sci, 2012, 388(1), 137 doi: 10.1016/j.jcis.2012.08.013
[47]
Khan M D, Akhtar J, Malik M A, et al. Tuning the phase and shape of copper sulfide nanostructures using mixed solvent systems. Chem Select, 2016, 1(18), 5982 doi: 10.1002/slct.201601308
[48]
Fan F J, Wu L, Yu S H. Energetic I–III–VI2 and I2 –II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ Sci, 2014, 7(1), 190 doi: 10.1039/C3EE41437J
[49]
Pearson G. Hard and soft acids and bases. Survey Progress Chem, 1969, 5(22), 1 doi: 10.1016/B978-0-12-395706-1.50007-8
[50]
Nag A, Kovalenko M V, Lee J S, et al. Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as surface ligands. J Am Chem Soc, 2011, 133(27), 10612 doi: 10.1021/ja2029415
[51]
Lamer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 1950, 11(72), 4847 doi: 10.1021/ja01167a001
[52]
Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angew Chem Int Ed, 2009, 48(1), 335 doi: 10.1557/mrs.2013.84
[53]
Zhu D X, Ye H H, Liu Z M, et al. Seed-mediated growth of heterostructured Cu1.94S-MS (M = Zn, Cd, Mn) and alloyed CuNS2 (N = In, Ga) nanocrystals with structure- and composition-dependent photocatalytic hydrogen evolution. Nanoscale, 2020, 12(10), 6111 doi: 10.1039/C9NR10004K
[54]
Coppel Y, Spataro G, Pagès C, et al. Full characterization of colloidal solutions of long-alkyl-chain-amine-stabilized ZnO nanoparticles by NMR spectroscopy: Surface state, equilibria, and affinity. Chem Eur J, 2012, 18(17), 5384 doi: 10.1002/chem.201102050
[55]
Kruszynska M, Borchert H, Parisi J, et al. Synthesis and shape control of CulnS2 nanoparticles. J Am Chem Soc, 2010, 132(45), 15976 doi: 10.1021/ja103828f
[56]
Connor S T, Hsu C M, Weil B D, et al. Phase transformation of biphasic Cu2S–CuInS2 to monophasic CuInS2 Nanorods. J Am Chem Soc, 2009, 131(13), 4962 doi: 10.1021/ja809901u
[57]
Yi L X, Gao M Y. From ultrathin two-dimensional djurleite nanosheets to one-dimensional nanorods comprised of djurleite nanoplates: Synthesis, characterization, and formation mechanism. Cryst Growth Des, 2011, 11(4), 1109 doi: 10.1021/cg101322s
[58]
Yang T Y, Wei L J, Jing L Y, et al. Dumbbell-shaped bi-component mesoporous janus solid nanoparticles for biphasic interface catalysis. Angew Chem Int Ed, 2017, 56(29), 8459 doi: 10.1002/anie.201701640
[59]
Li X M, Zhou L, Wei Y, et al. Anisotropic growth-induced synthesis of dual-compartment janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc, 2014, 136(42), 15086 doi: 10.1021/ja508733r
[60]
Apple E F. Investigations in the CuGaS2–ZnS and AgGaS2–ZnS systems. J Electrochem Soc, 1958, 105(5), 251 doi: 10.1149/1.2428818
[61]
Liu Z Y, Tang A W, Wang M, et al. Heating-up synthesis of cadmium-free and color-tunable quaternary and five-component Cu–In–Zn–S-based semiconductor nanocrystals. J Mater Chem C, 2015, 3(39), 10114 doi: 10.1039/C5TC02469B
[62]
Zeng B, Chen F, Liu Z, et al. Seeded-mediated growth of ternary Ag–In–S and quaternary Ag–In–Zn–S nanocrystals from binary Ag2S seeds and the composition-tunable optical properties. J Mater Chem C, 2019, 7(5), 1307 doi: 10.1039/C8TC05755A
[63]
Chen F, Guan Z Y, Tang A W. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes. J Mater Chem C, 2018, 6(41), 10958 doi: 10.1039/C8TC04028A
[64]
Liu Z M, Liu J, Huang Y B, et al. From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: non-injection synthesis and photocatalytic evolution. Nanoscale, 2019, 11(1), 158 doi: 10.1039/C8NR07353H
[65]
Cheng Y, Wang Y S, Bao F, et al. Shape control of monodisperse CdS nanocrystals: Hexagon and pyramid. J Phys Chem B, 2006, 110(19), 9448 doi: 10.1021/jp0612073
[66]
Liu Z M, Tang A W, Liu J, et al. Non-injection synthesis of L-shaped wurtzite Cu–Ga–Zn–S alloyed nanorods and their advantageous application in photocatalytic hydrogen evolution. J Mater Chem A, 2018, 6(38), 18649 doi: 10.1039/C8TA05395B
[67]
Xu Y, Xu R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl Surf Sci, 2015, 351(1), 779 doi: 10.1016/j.apsusc.2015.05.171
[68]
Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251), 933 doi: 10.1126/science.271.5251.933
[69]
Huang E W, Yao X L, Wang W C, et al. SnS2 nanoplates with specific facets exposed for enhanced visible-light-driven photocatalysis. ChemPhotoChem, 2016, 1, 1 doi: 10.1002/cptc.201600026
[70]
Liu M, Piao L, Zhao L, et al. Anatase TiO2 single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis. Chem Commun, 2010, 46, 1664 doi: 10.1039/b924172h
[71]
Zhou P, Yu J G, Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv Mater, 2014, 26(29), 4920 doi: 10.1002/adma.201400288
[72]
Cunningham P D, Boercker J E, Foos E E, et al. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett, 2011, 11(8), 3476 doi: 10.1021/nl202014a
[73]
Yang Y J, Tang D M, Zhang C, et al. "Protrusions'' or "holes'' in graphene: which is the better choice for sodium ion storage. Energy Environ Sci, 2017, 10(4), 979 doi: 10.1039/C7EE00329C
[74]
Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295, 2425 doi: 10.1126/science.1069156
Fig. 1.  (Color online) Schematic illustration and TEM images of the product evolution from Cu1.94S NCs to different types of heterostructured and alloyed NCs[53].

Fig. 2.  TEM images and morphology diagrams of 1D, quasi-2D and 2D CuGaS2 NCs[64].

Fig. 3.  (a) TEM images and (b) STEM-EDS elemental mapping images of the L-shaped Cu–Ga–Zn–S NCs. (c) XRD patterns of the products obtained at different reaction time. (d–h) TEM images of wurtzite Cu–Ga–Zn–S NCs synthesized at 240 °C for different reaction time: (d) 7 min, (e) 23 min, (f) 45 min, (g) 60 min, and (h) 120 min[66].

Fig. 4.  (Color online) (a) The hydrogen production rate of the Cu1.94S NCs, CuInS2 and CuGaS2 alloyed NCs. (b) The hydrogen production rate of Cu1.94S NCs, Cu1.94S–ZnS, Cu1.94S–CdS and Cu1.94S–MnS heterostructured NCs. (c) The energy level diagram of Cu1.94S NCs (black), CuInS2 alloyed NCs (red), CuGaS2 alloyed NCs (blue), Cu1.94S–ZnS (pink), Cu1.94S–CdS (green) and Cu1.94S–MnS heterostructured NCs (orange)[53].

Fig. 5.  (Color online) (a) The energy level diagrams of 1D, quasi-2D and 2D CuGaS2 NCs. (b) The photocatalytic hydrogen production rates of 1D, quasi-2D and 2D CuGaS2 NCs.

Fig. 6.  (Color online) Schematic models of the (a) (001) surface and (b) (100) surface of stimulated wurtzite CuGaS2 after geometry optimization. Work function for the (c) CuGaS2 (001) surface and (d) (100) surface. The calculated PDOS for (e) CuGaS2 (001) and (f) (100) surfaces, where the PDOS contains the total layer surface, top layer surface and bottom layer surface for simulated every surface[64].

Fig. 7.  Photocatalytic hydrogen evolution of binary Cu31S16 NCs, ternary CuGaS2 NCs and quaternary L-shaped Cu–Ga–Zn–S nanorods[66].

Fig. 8.  (Color online) Cycling tests of hydrogen production for (a) Cu1.94S–CdS (red) and Cu1.94S (black) NCs and (b) L-shaped Cu–Ga–Zn–S nanorods under simulated solar illumination[66].

[1]
Chow J. Energy resources and global development. Science, 2003, 302(5650), 1528 doi: 10.1126/science.1091939
[2]
Dincer I, Rosen M A. Energy, environment and sustainable development. Appl Energy, 1999, 64(1), 427 doi: 10.1016/S0306-2619(99)00111-7
[3]
Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95(1), 69 doi: 10.1021/cr00033a004
[4]
Armaroli N, Balzani V. The future of energy supply: Challenges and opportunities. Angew Chem Int Ed, 2007, 46, 52 doi: 10.1002/anie.200602373
[5]
L i, X, Yu J G, Low J X, et al. Engineering heterogeneous semiconductors for solar water splitting. J Mater Chem A, 2015, 3, 2485 doi: 10.1039/C4TA04461D
[6]
Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev, 2010, 11, 6474 doi: 10.1021/cr100246c
[7]
Muradov N Z, Veziroglu T N. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies. Int J Hydrogen Energy, 2008, 33(23), 6804 doi: 10.1016/j.ijhydene.2008.08.054
[8]
Takanabe K, Domen K. Toward visible light response: Overall water splitting using heterogeneous photocatalysts. Green, 2011, 1(4), 313 doi: 10.1515/GREEN.2011.030
[9]
Xu C Q, Anusuyadevi P R, Aymonier C, et al. Nanostructured materials for photocatalysis. Chem Soc Rev, 2019, 48, 3868 doi: 10.1039/C9CS00102F
[10]
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009, 38, 253 doi: 10.1039/B800489G
[11]
Shinde S S, Bhosale C H, Rajpure K Y. Solar light assisted photocatalysis of water using a zinc oxide semiconductor. J Semicond, 2013, 34(4), 043002 doi: 10.1088/1674-4926/34/4/043002
[12]
Huang Y B, Liu J, Deng Y C, et al. The application of perovskite materials in solar water splitting. J Semicond, 2020, 41(1), 011701 doi: 10.1088/1674-4926/41/1/011701
[13]
Xiang Q, Yu J, Jaroniec M. Graphene-based semiconductor photocatalysts. Chem Soc Rev, 2012, 41(2), 782 doi: 10.1039/C1CS15172J
[14]
Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev, 2014, 114(19), 9919 doi: 10.1021/cr5001892
[15]
Peng L, Liu Y, Li Y, et al. Fluorine-assisted structural engineering of colloidal anatase TiO2 hierarchical nanocrystals for enhanced photocatalytic hydrogen production. Nanoscale, 2019, 11, 22575 doi: 10.1039/C9NR06595D
[16]
Xu H, Reunchan P, Ouyang S, et al. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution. Chem Mater, 2013, 25(3), 405 doi: 10.1021/cm303502b
[17]
Preethi V, Kanmani S. Photocatalytic hydrogen production. Mater Sci Semicond Process, 2013, 16, 561 doi: 10.1016/j.mssp.2013.02.001
[18]
Jang J S, Kim H G, Borse P H. Simultaneous hydrogen production and decomposition of dissolved in alkaline water over composite photocatalysts under visible light irradiation. Int J Hydrogen Energy, 2007, 32, 4786 doi: 10.1016/j.ijhydene.2007.06.026
[19]
Costi R, Saunders A E, Elmalem E, et al. Visible light-induced charge retention and photocatalysis with hybrid CdSe–Au nanodumbbells. Nano Lett, 2008, 8(2), 637 doi: 10.1021/nl0730514
[20]
Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation. Chem Rev, 2010, 110(11), 6503 doi: 10.1021/cr1001645
[21]
Coughlan C, Ibánez M, Dobrozhan O, et al. Compound copper chalcogenide nanocrystals. Chem Rev, 2017, 117(9), 5865 doi: 10.1021/acs.chemrev.6b00376
[22]
Sun S D, Li P J, Liang S H, et al. Diversified copper sulfide (Cu2– xS) micro-/nanostructures: a comprehensive review on synthesis, modifications and applications. Nanoscale, 2017, 9(32), 11357 doi: 10.1039/C7NR03828C
[23]
Tang A W, Hu Z L, Yin Z, et al. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase. Dalton Trans, 2015, 44(19), 9251 doi: 10.1039/C5DT01111F
[24]
Trizio D L, Manna L. Forging colloidal nanostructures via cation exchange reactions. Chem Rev, 2016, 116, 10852 doi: 10.1021/acs.chemrev.5b00739
[25]
Chen B K, Chang S, Li D Y, et al. Template synthesis of CuInS2 nanocrystals from In2S3 nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem Mater, 2015, 27, 5949 doi: 10.1021/acs.chemmater.5b01971
[26]
Hages C J, Levcenco S, Miskin C K, et al. Improved performance of Ge-alloyed CZTGeSSe thin-film solar cells through control of elemental losses. Prog Photovolt Res Appl, 2013, 23(3), 376 doi: 10.1002/pip.2442
[27]
Wang L J, Guan Z Y, Tang A W. Multinary copper-based chalcogenide semiconductor nanocrystals: synthesis and applications in light-emitting diodes and bioimaging. J Nanopart Res, 2020, 22(1), 1 doi: 10.1007/s11051-019-4718-8
[28]
Guan Z Y, Tang A W, Lv P W, et al. new insights into the formation and color-tunable optical properties of multinary Cu–In–Zn-based chalcogenide semiconductor nanocrystals. Adv Opt Mater, 2018, 6, 1701389 doi: 10.1002/adom.201701389
[29]
Guan Z Y, Chen F, Liu Z Y, et al. Compositional engineering of multinary Cu–In–Zn-based semiconductor nanocrystals for efficient and solution-processed red-emitting quantum-dot light-emitting diodes. Organ Electron, 2019, 74, 46 doi: 10.1016/j.orgel.2019.06.024
[30]
Kim B Y, Kim J H, Lee K H, et al. Synthesis of highly efficient azure-to-blue-emitting Zn –Cu –Ga –S quantum dots. Chem Commun, 2017, 53(29), 4088 doi: 10.1039/C7CC00952F
[31]
Li X, Tang A W, et al. Effects of alkanethiols chain length on the synthesis of Cu2– xS nanocrystals: phase, morphology, plasmonic properties and electrical conductivity. RSC Adv, 2014, 4, 54547 doi: 10.1039/C4RA08707K
[32]
Ye H H, Tang A W, Yang C H, et al. Synthesis of Cu2– xS nanocrystals induced by foreign metal ions: phase and morphology transformation and localized surface plasmon resonance. CrystEngComm, 2014, 16(37), 8684 doi: 10.1039/C4CE00945B
[33]
Zhu D X, Tang A W, Ye H H, et al. Tunable near-infrared localized surface plasmon resonances of djurleite nanocrystals: effects of size, shape, surface-ligands and oxygen exposure time. J Mater Chem C, 2015, 3(26), 6686 doi: 10.1039/C5TC01310K
[34]
Zhu D X, Tang A W, Peng L, et al. Tuning the plasmonic resonance of Cu2− xS nanocrystals: effects of the crystal phase, morphology and surface ligands. J Mater Chem C, 2016, 4(22), 4880 doi: 10.1039/C6TC00980H
[35]
Chen M M, Xue H G, Guo S P. Multinary metal chalcogenides with tetrahedral structures for second-order nonlinear optical, photocatalytic, and photovoltaic applications. Coordin Chem Rev, 2018, 368, 115 doi: 10.1016/j.ccr.2018.04.014
[36]
Nethravathi C, Ragesh R N, Rajamathi J T, et al. Microwave-assisted synthesis of porous aggregates of CuS nanoparticles for sunlight photocatalysis. ACS Omega, 2019, 4(3), 4825 doi: 10.1021/acsomega.8b03288
[37]
Kobayakawa K, Teranishi A, Tsurumaki T, et al. Photocatalytic activity of CuInS2 and CuIn5S8. Electrochim Acta, 1992, 37(3), 465 doi: 10.1016/0013-4686(92)87037-Z
[38]
Kaga H, Tsutsui Y, Nagane A, et al. An effect of Ag(I)-substitution at Cu sites in CuGaS2 on photocatalytic and photoelectrochemical properties for solar hydrogen evolution. J Mater Chem A, 2015, 3(43), 21815 doi: 10.1039/C5TA04756K
[39]
Fan X B, Yu S, Zhan F, et al. Nonstoichiometric Cu xIn yS quantum dots for efficient photocatalytic hydrogen evolution. ChemSusChem, 2017, 10(24), 4833 doi: 10.1002/cssc.201701950
[40]
Yi L X, Liu Y Y, Yang N L, et al. One dimensional CuInS2–ZnS heterostructured nanomaterials as low-cost and high-performance counter electrodes of dye-sensitized solar cells. Energy Environ Sci, 2013, 6(3), 835 doi: 10.1039/c3ee24176a
[41]
Yu Z J, Chen Z, Chen Y G, et al. Photocatalytic hydrogenation of nitroarenes using Cu1.94S–Zn0.23Cd0.77S heteronanorods. Nano Res, 2018, 11(7), 3730 doi: 10.1007/s12274-017-1944-1
[42]
Tan L L, Liu Y H, Mao B D, et al. Effective bandgap narrowing of Cu–In–Zn–S quantum dots for photocatalytic H2 production via cocatalyst-alleviated charge recombination. Inorgan Chem Front, 2018, 5(1), 258 doi: 10.1039/C7QI00607A
[43]
Kandiel T A, Anjum D H, Sautet P, et al. Electronic structure and photocatalytic activity of wurtzite Cu –Ga –S nanocrystals and their Zn substitution. J Mater Chem A, 2015, 3(16), 8896 doi: 10.1039/C5TA01552A
[44]
Yu X L, An X Q, Shavel A, et al. The effect of the Ga content on the photocatalytic hydrogen evolution of CuIn1− xGa xS2 nanocrystals. J Mater Chem A, 2014, 2(31), 12317 doi: 10.1039/C4TA01315H
[45]
Zhao M S, Huang F, Lin H, et al. CuGaS2–ZnS p–n nanoheterostructures: a promising visible light photo-catalyst for water-splitting hydrogen production. Nanoscale, 2016, 8(37), 16670 doi: 10.1039/C6NR05002F
[46]
Kuzuya T, Hamanaka Y, Itoh K, et al. Phase control and its mechanism of CuInS2 nanoparticles. J Colloid Interface Sci, 2012, 388(1), 137 doi: 10.1016/j.jcis.2012.08.013
[47]
Khan M D, Akhtar J, Malik M A, et al. Tuning the phase and shape of copper sulfide nanostructures using mixed solvent systems. Chem Select, 2016, 1(18), 5982 doi: 10.1002/slct.201601308
[48]
Fan F J, Wu L, Yu S H. Energetic I–III–VI2 and I2 –II–IV–VI4 nanocrystals: synthesis, photovoltaic and thermoelectric applications. Energy Environ Sci, 2014, 7(1), 190 doi: 10.1039/C3EE41437J
[49]
Pearson G. Hard and soft acids and bases. Survey Progress Chem, 1969, 5(22), 1 doi: 10.1016/B978-0-12-395706-1.50007-8
[50]
Nag A, Kovalenko M V, Lee J S, et al. Metal-free inorganic ligands for colloidal nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as surface ligands. J Am Chem Soc, 2011, 133(27), 10612 doi: 10.1021/ja2029415
[51]
Lamer V K, Dinegar R H. Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc, 1950, 11(72), 4847 doi: 10.1021/ja01167a001
[52]
Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angew Chem Int Ed, 2009, 48(1), 335 doi: 10.1557/mrs.2013.84
[53]
Zhu D X, Ye H H, Liu Z M, et al. Seed-mediated growth of heterostructured Cu1.94S-MS (M = Zn, Cd, Mn) and alloyed CuNS2 (N = In, Ga) nanocrystals with structure- and composition-dependent photocatalytic hydrogen evolution. Nanoscale, 2020, 12(10), 6111 doi: 10.1039/C9NR10004K
[54]
Coppel Y, Spataro G, Pagès C, et al. Full characterization of colloidal solutions of long-alkyl-chain-amine-stabilized ZnO nanoparticles by NMR spectroscopy: Surface state, equilibria, and affinity. Chem Eur J, 2012, 18(17), 5384 doi: 10.1002/chem.201102050
[55]
Kruszynska M, Borchert H, Parisi J, et al. Synthesis and shape control of CulnS2 nanoparticles. J Am Chem Soc, 2010, 132(45), 15976 doi: 10.1021/ja103828f
[56]
Connor S T, Hsu C M, Weil B D, et al. Phase transformation of biphasic Cu2S–CuInS2 to monophasic CuInS2 Nanorods. J Am Chem Soc, 2009, 131(13), 4962 doi: 10.1021/ja809901u
[57]
Yi L X, Gao M Y. From ultrathin two-dimensional djurleite nanosheets to one-dimensional nanorods comprised of djurleite nanoplates: Synthesis, characterization, and formation mechanism. Cryst Growth Des, 2011, 11(4), 1109 doi: 10.1021/cg101322s
[58]
Yang T Y, Wei L J, Jing L Y, et al. Dumbbell-shaped bi-component mesoporous janus solid nanoparticles for biphasic interface catalysis. Angew Chem Int Ed, 2017, 56(29), 8459 doi: 10.1002/anie.201701640
[59]
Li X M, Zhou L, Wei Y, et al. Anisotropic growth-induced synthesis of dual-compartment janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J Am Chem Soc, 2014, 136(42), 15086 doi: 10.1021/ja508733r
[60]
Apple E F. Investigations in the CuGaS2–ZnS and AgGaS2–ZnS systems. J Electrochem Soc, 1958, 105(5), 251 doi: 10.1149/1.2428818
[61]
Liu Z Y, Tang A W, Wang M, et al. Heating-up synthesis of cadmium-free and color-tunable quaternary and five-component Cu–In–Zn–S-based semiconductor nanocrystals. J Mater Chem C, 2015, 3(39), 10114 doi: 10.1039/C5TC02469B
[62]
Zeng B, Chen F, Liu Z, et al. Seeded-mediated growth of ternary Ag–In–S and quaternary Ag–In–Zn–S nanocrystals from binary Ag2S seeds and the composition-tunable optical properties. J Mater Chem C, 2019, 7(5), 1307 doi: 10.1039/C8TC05755A
[63]
Chen F, Guan Z Y, Tang A W. Nanostructure and device architecture engineering for high-performance quantum-dot light-emitting diodes. J Mater Chem C, 2018, 6(41), 10958 doi: 10.1039/C8TC04028A
[64]
Liu Z M, Liu J, Huang Y B, et al. From one-dimensional to two-dimensional wurtzite CuGaS2 nanocrystals: non-injection synthesis and photocatalytic evolution. Nanoscale, 2019, 11(1), 158 doi: 10.1039/C8NR07353H
[65]
Cheng Y, Wang Y S, Bao F, et al. Shape control of monodisperse CdS nanocrystals: Hexagon and pyramid. J Phys Chem B, 2006, 110(19), 9448 doi: 10.1021/jp0612073
[66]
Liu Z M, Tang A W, Liu J, et al. Non-injection synthesis of L-shaped wurtzite Cu–Ga–Zn–S alloyed nanorods and their advantageous application in photocatalytic hydrogen evolution. J Mater Chem A, 2018, 6(38), 18649 doi: 10.1039/C8TA05395B
[67]
Xu Y, Xu R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl Surf Sci, 2015, 351(1), 779 doi: 10.1016/j.apsusc.2015.05.171
[68]
Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271(5251), 933 doi: 10.1126/science.271.5251.933
[69]
Huang E W, Yao X L, Wang W C, et al. SnS2 nanoplates with specific facets exposed for enhanced visible-light-driven photocatalysis. ChemPhotoChem, 2016, 1, 1 doi: 10.1002/cptc.201600026
[70]
Liu M, Piao L, Zhao L, et al. Anatase TiO2 single crystals with exposed {001} and {110} facets: facile synthesis and enhanced photocatalysis. Chem Commun, 2010, 46, 1664 doi: 10.1039/b924172h
[71]
Zhou P, Yu J G, Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv Mater, 2014, 26(29), 4920 doi: 10.1002/adma.201400288
[72]
Cunningham P D, Boercker J E, Foos E E, et al. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett, 2011, 11(8), 3476 doi: 10.1021/nl202014a
[73]
Yang Y J, Tang D M, Zhang C, et al. "Protrusions'' or "holes'' in graphene: which is the better choice for sodium ion storage. Energy Environ Sci, 2017, 10(4), 979 doi: 10.1039/C7EE00329C
[74]
Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295, 2425 doi: 10.1126/science.1069156
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3647 Times PDF downloads: 56 Times Cited by: 0 Times

    History

    Received: 02 June 2020 Revised: 23 June 2020 Online: Accepted Manuscript: 19 August 2020Uncorrected proof: 20 August 2020Published: 04 September 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hao Fu, Aiwei Tang. Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution[J]. Journal of Semiconductors, 2020, 41(9): 091706. doi: 10.1088/1674-4926/41/9/091706 H Fu, A W Tang, Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution[J]. J. Semicond., 2020, 41(9): 091706. doi: 10.1088/1674-4926/41/9/091706.Export: BibTex EndNote
      Citation:
      Hao Fu, Aiwei Tang. Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution[J]. Journal of Semiconductors, 2020, 41(9): 091706. doi: 10.1088/1674-4926/41/9/091706

      H Fu, A W Tang, Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution[J]. J. Semicond., 2020, 41(9): 091706. doi: 10.1088/1674-4926/41/9/091706.
      Export: BibTex EndNote

      Rational design of multinary copper chalcogenide nanocrystals for photocatalytic hydrogen evolution

      doi: 10.1088/1674-4926/41/9/091706
      More Information
      • Corresponding author: A W Tang, awtang@bjtu.edu.cn
      • Received Date: 2020-06-02
      • Revised Date: 2020-06-23
      • Published Date: 2020-09-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return