ARTICLES

Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate

Yan Gao1, 2, Liyun Zhao2, 3, Qiuyu Shang2, 3, Chun Li2, Zhen Liu2, Qi Li1, Xina Wang1, and Qing Zhang2, 3,

+ Author Affiliations

 Corresponding author: Xina Wang, E-mail: xnwang2006@hotmail.com; Qing Zhang, E-mail: q_zhang@pku.edu.cn

PDF

Turn off MathJax

Abstract: Fabricating high-quality cesium lead chloride (CsPbCl3) perovskite nanowires (NWs) with dimension below 10 nm is not only of interests in fundamental physics, but also holds the great promise for optoelectronic applications. Herein, ultrathin CsPbCl3 NWs with height of ~7 nm, have been achieved via vapor phase deposition method. Power and temperature-dependent photoluminescence (PL) spectroscopy is performed to explore the emission properties of the CsPbCl3 NWs. Strong free exciton recombination is observed at ~3.02 eV as the temperature (T) is 78−294 K with binding energy of ~ 37.5 meV. With the decreasing of T, the PL peaks exhibit a first blueshift by 2 meV for T ~ 294−190 K and then a redshift by 4 meV for T ~ 190−78 K. The exciton–optical phonon interaction plays a major role in the linewidth broadening of the PL spectra with average optical phonon energy of ~48.0 meV and the interaction coefficient of 203.9 meV. These findings advance the fabrication of low dimensional CsPbCl3 perovskite and provide insights into the photophysics of the CsPbCl3 perovskite.

Key words: perovskiteCsPbCl3nanowirevan der Waals epitaxy



[1]
Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335 doi: 10.1021/acs.nanolett.7b04847
[2]
Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636 doi: 10.1038/nmat4271
[3]
Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 2014, 14, 5995 doi: 10.1021/nl503057g
[4]
Yettapu G R, Talukdar D, Sarkar S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett, 2016, 16, 4838 doi: 10.1021/acs.nanolett.6b01168
[5]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[6]
Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249 doi: 10.1038/s41586-018-0576-2
[7]
Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718 doi: 10.1002/adma.201600784
[8]
Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 2016, 26, 6238 doi: 10.1002/adfm.v26.34
[9]
Zhou H, Yuan S, Wang X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 2017, 11, 1189 doi: 10.1021/acsnano.6b07374
[10]
Lin K, Xing J, Quan L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[11]
Gao Y, Zhao L, Shang Q, et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv Mater, 2018, 30, 1801805 doi: 10.1002/adma.v30.31
[12]
Akkerman Q A, Gandini M, Di Stasio F, et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat Energy, 2016, 2, 16194 doi: 10.1038/nenergy.2016.194
[13]
Liu Z, Shang Q, Li C, et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Appl Phys Lett, 2019, 114, 101902 doi: 10.1063/1.5082759
[14]
Zhang J, Wang Q, Zhang X, et al. High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv, 2017, 7, 36722 doi: 10.1039/C7RA06597C
[15]
Yong Z J, Guo S Q, Ma J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc, 2018, 140, 9942 doi: 10.1021/jacs.8b04763
[16]
Zou S, Liu Y, Li J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J Am Chem Soc, 2017, 139, 11443 doi: 10.1021/jacs.7b04000
[17]
Gong M, Sakidja R, Goul R, et al. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano, 2019 doi: 10.1021/acsnano.8b07850
[18]
Fu Y, Zhu H, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 2016, 10, 7963 doi: 10.1021/acsnano.6b03916
[19]
Chen J, Fu Y, Samad L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2017, 17, 460 doi: 10.1021/acs.nanolett.6b04450
[20]
Gao G, Xi Q, Zhou H, et al. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale, 2017, 9, 12032 doi: 10.1039/C7NR04421F
[21]
Wang Y, Sun X, Shivanna R, et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett, 2016, 16, 7974 doi: 10.1021/acs.nanolett.6b04297
[22]
Lohar A A, Shinde A, Gahlaut R, et al. Enhanced photoluminescence and stimulated emission in CsPbCl3 nanocrystals at low temperature. J Phys Chem C, 2018, 122, 25014 doi: 10.1021/acs.jpcc.8b06579
[23]
Kondo S, Suzuki K, Saito T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation. Phys Rev B, 2004, 70, 205322 doi: 10.1103/PhysRevB.70.205322
[24]
Sebastian M, Peters J A, Stoumpos C C, et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys Rev B, 2015, 92, 235210 doi: 10.1103/PhysRevB.92.235210
[25]
Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B, 1992, 45, 8989 doi: 10.1103/PhysRevB.45.8989
[26]
Xing G, Wu B, Wu X, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat Commun, 2017, 8, 14558 doi: 10.1038/ncomms14558
[27]
Taguchi T, Shirafuji J, Inuishi Y. Excitonic emission in cadmium telluride. Phys Status Solidi B, 1975, 68, 727 doi: 10.1002/(ISSN)1521-3951
[28]
Saran R, Heuer-Jungemann A, Kanaras A G, et al. Giant bandgap renormalization and exciton–phonon scattering in perovskite nanocrystals. Adv Opt Mater, 2017, 5, 1700231 doi: 10.1002/adom.201700231
[29]
Du W, Zhang S, Wu Z, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 2019, 11, 3145 doi: 10.1039/C8NR09634A
[30]
Niesner D, Schuster O, Wilhelm M, et al. Temperature-dependent optical spectra of single-crystal (CH3NH3)PbBr3 cleaved in ultrahigh vacuum. Phys Rev B, 2017, 95, 075207 doi: 10.1103/PhysRevB.95.075207
[31]
Yu C, Chen Z, Wang J J, et al. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. J Appl Phys, 2011, 110, 063526 doi: 10.1063/1.3638699
[32]
Wu K, Bera A, Ma C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys, 2014, 16, 22476 doi: 10.1039/C4CP03573A
[33]
Calistru D M, Mihut L, Lefrant S, et al. Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J Appl Phys, 1997, 82, 5391 doi: 10.1063/1.366307
Fig. 1.  (Color online) The structure and morphology characterization of ultrathin CsPbCl3 nanowires (NWs) epitaxial on mica. (a) Scanning electron microscopy (SEM) image of the ultrathin CsPbCl3 NWs grown on (001)-mica by chemical vapor deposition method. (b) Atomic force microscopy (AFM) image of the CsPbCl3 NWs, scale bar: 100 nm. (c) Corresponding data of CsPbCl3 NWs height extracted from (b). (d) X-ray diffraction pattern of the CsPbCl3 NWs on mica (red line) and mica (black line).

Fig. 2.  (Color online) Photoluminescence (PL) emission spectra of thin (height: ~ 7 nm; upper panel) and thick (height: ~ 8 μm; lower panel) CsPbCl3 NWs on mica at (a) 294 K and (b) 78 K, respectively. Solid and dashed lines: Lorentzian function fitting curves; open circles: experimental data. The excitation power density Pex of ~ 1.2 kW/cm2.

Fig. 3.  (Color online) (a) Power-dependent emission spectra of thin CsPbCl3 NWs on mica at 294 K with Pex from ~ 0.3 to 61.1 kW/cm2. Scatters: experimental data points; red and blue dot lines are the fitting curves of the FX and X-band emission by Lorentzian function, respectively. (b) Integrated PL intensity as a function of Pex extracted from (a). Red scatters and blue scatters: integrated PL peak intensity of FX and X-band as a function of Pex, respectively; black scatters: the integrated PL intensity of NWs; solid lines: fitting curves.

Fig. 4.  (Color online) (a) Temperature-dependent PL spectra of CsPbCl3 NWs on mica in the range of 294 − 78 K. The red and blue dot lines are the fitting curves of the FX and X-band by Lorentzian function, respectively. Scatters: experimental data point; Pex: ~ 1.2 kW/cm2. (b) Corresponding integrated PL intensity (blue scatters) and center peak energy (pink scatters) of FX as a function of temperature (solid red line, fitting curve). (c) FWHM of FX emission peak (blue scatters, experimental data points; red line, fitting curve). The Γin, ΓAC and ΓOC represent the contribution of inhomogeneous broadening, acoustic phonon and optical phonon for FWHM broaden. Solid line, Γin + ΓAC + ΓOC; dashed dot line, Γin + ΓOC; dot line, Γin + ΓAC. The fitting result show that the temperature-dependent FWHM broaden is mainly contributed from the optical phonon.

[1]
Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335 doi: 10.1021/acs.nanolett.7b04847
[2]
Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636 doi: 10.1038/nmat4271
[3]
Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 2014, 14, 5995 doi: 10.1021/nl503057g
[4]
Yettapu G R, Talukdar D, Sarkar S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett, 2016, 16, 4838 doi: 10.1021/acs.nanolett.6b01168
[5]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519 doi: 10.1126/science.aaa2725
[6]
Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249 doi: 10.1038/s41586-018-0576-2
[7]
Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718 doi: 10.1002/adma.201600784
[8]
Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 2016, 26, 6238 doi: 10.1002/adfm.v26.34
[9]
Zhou H, Yuan S, Wang X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 2017, 11, 1189 doi: 10.1021/acsnano.6b07374
[10]
Lin K, Xing J, Quan L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245 doi: 10.1038/s41586-018-0575-3
[11]
Gao Y, Zhao L, Shang Q, et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv Mater, 2018, 30, 1801805 doi: 10.1002/adma.v30.31
[12]
Akkerman Q A, Gandini M, Di Stasio F, et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat Energy, 2016, 2, 16194 doi: 10.1038/nenergy.2016.194
[13]
Liu Z, Shang Q, Li C, et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Appl Phys Lett, 2019, 114, 101902 doi: 10.1063/1.5082759
[14]
Zhang J, Wang Q, Zhang X, et al. High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv, 2017, 7, 36722 doi: 10.1039/C7RA06597C
[15]
Yong Z J, Guo S Q, Ma J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc, 2018, 140, 9942 doi: 10.1021/jacs.8b04763
[16]
Zou S, Liu Y, Li J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J Am Chem Soc, 2017, 139, 11443 doi: 10.1021/jacs.7b04000
[17]
Gong M, Sakidja R, Goul R, et al. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano, 2019 doi: 10.1021/acsnano.8b07850
[18]
Fu Y, Zhu H, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 2016, 10, 7963 doi: 10.1021/acsnano.6b03916
[19]
Chen J, Fu Y, Samad L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2017, 17, 460 doi: 10.1021/acs.nanolett.6b04450
[20]
Gao G, Xi Q, Zhou H, et al. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale, 2017, 9, 12032 doi: 10.1039/C7NR04421F
[21]
Wang Y, Sun X, Shivanna R, et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett, 2016, 16, 7974 doi: 10.1021/acs.nanolett.6b04297
[22]
Lohar A A, Shinde A, Gahlaut R, et al. Enhanced photoluminescence and stimulated emission in CsPbCl3 nanocrystals at low temperature. J Phys Chem C, 2018, 122, 25014 doi: 10.1021/acs.jpcc.8b06579
[23]
Kondo S, Suzuki K, Saito T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation. Phys Rev B, 2004, 70, 205322 doi: 10.1103/PhysRevB.70.205322
[24]
Sebastian M, Peters J A, Stoumpos C C, et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys Rev B, 2015, 92, 235210 doi: 10.1103/PhysRevB.92.235210
[25]
Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B, 1992, 45, 8989 doi: 10.1103/PhysRevB.45.8989
[26]
Xing G, Wu B, Wu X, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat Commun, 2017, 8, 14558 doi: 10.1038/ncomms14558
[27]
Taguchi T, Shirafuji J, Inuishi Y. Excitonic emission in cadmium telluride. Phys Status Solidi B, 1975, 68, 727 doi: 10.1002/(ISSN)1521-3951
[28]
Saran R, Heuer-Jungemann A, Kanaras A G, et al. Giant bandgap renormalization and exciton–phonon scattering in perovskite nanocrystals. Adv Opt Mater, 2017, 5, 1700231 doi: 10.1002/adom.201700231
[29]
Du W, Zhang S, Wu Z, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 2019, 11, 3145 doi: 10.1039/C8NR09634A
[30]
Niesner D, Schuster O, Wilhelm M, et al. Temperature-dependent optical spectra of single-crystal (CH3NH3)PbBr3 cleaved in ultrahigh vacuum. Phys Rev B, 2017, 95, 075207 doi: 10.1103/PhysRevB.95.075207
[31]
Yu C, Chen Z, Wang J J, et al. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. J Appl Phys, 2011, 110, 063526 doi: 10.1063/1.3638699
[32]
Wu K, Bera A, Ma C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys, 2014, 16, 22476 doi: 10.1039/C4CP03573A
[33]
Calistru D M, Mihut L, Lefrant S, et al. Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J Appl Phys, 1997, 82, 5391 doi: 10.1063/1.366307
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3727 Times PDF downloads: 82 Times Cited by: 0 Times

    History

    Received: 10 March 2019 Revised: 07 April 2019 Online: Accepted Manuscript: 26 April 2019Uncorrected proof: 30 April 2019Published: 08 May 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yan Gao, Liyun Zhao, Qiuyu Shang, Chun Li, Zhen Liu, Qi Li, Xina Wang, Qing Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate[J]. Journal of Semiconductors, 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201 Y Gao, L Y Zhao, Q Y Shang, C Li, Z Liu, Q Li, X N Wang, Q Zhang, Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate[J]. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201.Export: BibTex EndNote
      Citation:
      Yan Gao, Liyun Zhao, Qiuyu Shang, Chun Li, Zhen Liu, Qi Li, Xina Wang, Qing Zhang. Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate[J]. Journal of Semiconductors, 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201

      Y Gao, L Y Zhao, Q Y Shang, C Li, Z Liu, Q Li, X N Wang, Q Zhang, Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate[J]. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201.
      Export: BibTex EndNote

      Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate

      doi: 10.1088/1674-4926/40/5/052201
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return