SEMICONDUCTOR INTEGRATED CIRCUITS

A BFSK and OOK IF demodulation circuit with 2.8 μs settling time and re-configurable image rejection functions for MICS/BCC applications

Tongqiang Gao1, 2, , Zhenxiong Chen1, 2, Siqi Zhao1, 2, Haigang Yang1, 2 and Xinxia Cai1, 2

+ Author Affiliations

 Corresponding author: Tongqiang Gao, tqgao@mail.ie.ac.cn

PDF

Turn off MathJax

Abstract: A BFSK and OOK IF base-band circuit is provided to implement the low-IF RF receivers for a dual-band MICS/BCC network controller. In order to transfer the massive vital data immediately, the IF circuit is comprised of the fast-settling feed-forward programmable gain amplifier (PGA), a GmC complex filter, the fixed gain amplifier (FGA) and a 4-input " quadratic sum” demodulator. A novel auto-switched coarse gain-setting method is adopted in the PGA to enhance the reaction speed and narrow the output signal range. Also the PGA does not suffer the same stability constraint as open-loop topologies. The complex filter fulfills the function of image rejection, in which the center frequency and bandwidth can be adjusted individually. The FGA is used to ameliorate the linearity and the ‘quadratic sum’ demodulator can reduce the overall power consumption. The designed IF circuit is fabricated with SMIC 0.18 μm CMOS process. The chip area is about 5.36 mm2. Measurement results are given to verify the design goals.

Key words: low-IF receiverVGAcomplex filterMICSBCC



[1]
Body Area Network (BAN), IEEE 802.15 WPANTM Task Group 6, Nov. 2007
[2]
Tino C, Seungkee M, Sridhar S, et al. A CMOS low-power transceiver with reconfigurable antenna interface for medical implant applications. IEEE Trans Microwave Theory Tech, 2011, 59(5): 1369 doi: 10.1109/TMTT.2011.2116036
[3]
Cho N, Bae J, Yoo H J. A 10.8 mW, body channel communication/MICS dual-band transceiver for a unified body sensor network controller. IEEE J Solid-State Circuits, 2009, 44(12): 3459 doi: 10.1109/JSSC.2009.2032592
[4]
Hsieh J Y, Huang Y C, Kuo P H, et al. A 0.45-V low-power OOK/FSK RF receiver in 0.18 μm CMOS technology for implantable medical applications. IEEE Trans Circuits Syst I, 2016, 63(8): 1123 doi: 10.1109/TCSI.2016.2589338
[5]
Mohamed Z, Mohamed S. A low-power dual-injection-locked RF receiver with FSK-to-OOK conversion for biomedical implants. IEEE Trans Circuits Syst I, 2015, 62(11): 2748 doi: 10.1109/TCSI.2015.2477577
[6]
FCC Rules and Regulations, MICS Band Plan, Part 95, 2003
[7]
Ilku N, Kyudon C, Joonhee L, et al. A 2.4 GHz low-power low-IF receiver and direct-conversion transmitter in 0.18-μm CMOS for IEEE 802.15.4 WPAN applications. IEEE Trans Microwave Theory Tech, 2007, 55(4): 682 doi: 10.1109/TMTT.2007.893646
[8]
Masaki K, Takashi T, Tadashi M, et al. A low-IF/Zero-IF re-configurable analog baseband IC with an I/Q imbalance cancellation scheme. IEEE J Solid-State Circuits, 2011, 46(3): 572 doi: 10.1109/JSSC.2010.2102510
[9]
Juan P A P, Belen C, Santiago C. A high-performance CMOS feedforward AGC circuit for a WLAN receiver. IEEE Trans Ind Electron, 2010, 57(8): 2851 doi: 10.1109/TIE.2009.2036021
[10]
Cheng X, Yang H G, Gao T Q, et al. A feed-forward AGC Circuits with 48 dB-gain range, 1.2 μs minimum settling time for WiMAX receiver. Analog Integr Cir Sig Process, 2013, 76(1): 61 doi: 10.1007/s10470-013-0076-0
[11]
OKjune J, Robert M F, Brent A M. Analog AGC circuitry for a CMOS WLAN receiver. IEEE J. Solid-State Circuits, 2006, 41(10): 2291 doi: 10.1109/JSSC.2006.881548
[12]
Cheng X, Yang H G, Gao T Q, et al. A CMOS GmC complex filter with re-configurable centre and cutoff frequencies in wimax receivers. J Semicond, 2013, 34(7): 075004 doi: 10.1088/1674-4926/34/7/075004
[13]
Liu J H, Li C, Chen L, et al. An ultra-low power 400 MHz OOK transceiver for medical implanted applications. ESSCIRC, 2011: 175
[14]
Wang X M, Chi N Y, Wang Z H. A low-power high-data-rate ASK IF receiver with a digital-control AGC loop. IEEE Trans Circuits Syst Ⅱ, 2010, 57(8): 617
[15]
Yin Y, Yang Y, Zhang L. A low-power low-cost 780 MHz CMOS FSK receiver for short-range wireless communication. Chin J Electron, 2016, 25(2): 220 doi: 10.1049/cje.2016.03.005
Fig. 1.  (Color online) Unified wireless body sensor network for MICS and BCC system.

Fig. 2.  The proposed IF circuits in network controller.

Fig. 3.  Feed-forward AGC.

Fig. 4.  Topology of coarse gain control of PGA.

Fig. 5.  The presented low-IF receiver scheme.

Fig. 6.  Schematic of FGA.

Fig. 7.  Schematic of the ‘quadratic sum’ block.

Fig. 8.  (Color online) Micro-photograph of the fabricated IF circuits.

Fig. 9.  (Color online) Transient waveforms of BFSK mode receiver.

Fig. 10.  (Color online) Measured waveforms of OOK mode receiver.

Fig. 11.  (Color online) Measured reconfigurability of the tunable complex filter. (a) Variable center frequencies with a fixed bandwidth. (b) Variable bandwidths with a fixed center frequency.

Fig. 12.  (Color online) Transfer functions of different working modes.

Table 1.   Summarized target specifications of IF blocks.

Parameter Value
PGA Input range (dBm) −70 to 0
Gain step (dB) −10/0/10/20/30/40/50
Settling time (μs) < 5
Complex filter Input range (dBm) −20 to −10
Image rejection (dB) > 30
Center freq. (kHz) 250/500/1000
Bandwidth (Hz) variable
FGA Adjustable gain (dB) 10/15
Output amplitude (mV) > 500
DownLoad: CSV

Table 2.   Comparisons with other low-IF works.

Parameter Ref. [7] Ref. [8] Ref. [14] Ref. [15] This work
Technology 0.18 μm dnw 90 nm 0.18 μm 0.18 μm 0.18 μm
Topology Low-IF Low-IF/Zero-IF Low-IF Low-IF Low-IF
Modulation type ASK FSK BFSK/OOK
Current consumption (mA) 6 (Rx) 2.1-3 (Filter & PGA) 1.21 2.46 9.5
IF frequency (MHz) 2 0.2–6 10 0.25/0.5/1/2 0.5/1/2
VGA control mode Feedback Feedback Feed-forward
Input signal range (dB) 105 70
Gain range 0–60 dB (0–71)/1 dB (–10 to 50)/4 dB (–10 to 50)/10 dB
Settling time (μs) 20 < 2.8
IMRR (dB) > 35 55 No function > 20 > 30
DownLoad: CSV
[1]
Body Area Network (BAN), IEEE 802.15 WPANTM Task Group 6, Nov. 2007
[2]
Tino C, Seungkee M, Sridhar S, et al. A CMOS low-power transceiver with reconfigurable antenna interface for medical implant applications. IEEE Trans Microwave Theory Tech, 2011, 59(5): 1369 doi: 10.1109/TMTT.2011.2116036
[3]
Cho N, Bae J, Yoo H J. A 10.8 mW, body channel communication/MICS dual-band transceiver for a unified body sensor network controller. IEEE J Solid-State Circuits, 2009, 44(12): 3459 doi: 10.1109/JSSC.2009.2032592
[4]
Hsieh J Y, Huang Y C, Kuo P H, et al. A 0.45-V low-power OOK/FSK RF receiver in 0.18 μm CMOS technology for implantable medical applications. IEEE Trans Circuits Syst I, 2016, 63(8): 1123 doi: 10.1109/TCSI.2016.2589338
[5]
Mohamed Z, Mohamed S. A low-power dual-injection-locked RF receiver with FSK-to-OOK conversion for biomedical implants. IEEE Trans Circuits Syst I, 2015, 62(11): 2748 doi: 10.1109/TCSI.2015.2477577
[6]
FCC Rules and Regulations, MICS Band Plan, Part 95, 2003
[7]
Ilku N, Kyudon C, Joonhee L, et al. A 2.4 GHz low-power low-IF receiver and direct-conversion transmitter in 0.18-μm CMOS for IEEE 802.15.4 WPAN applications. IEEE Trans Microwave Theory Tech, 2007, 55(4): 682 doi: 10.1109/TMTT.2007.893646
[8]
Masaki K, Takashi T, Tadashi M, et al. A low-IF/Zero-IF re-configurable analog baseband IC with an I/Q imbalance cancellation scheme. IEEE J Solid-State Circuits, 2011, 46(3): 572 doi: 10.1109/JSSC.2010.2102510
[9]
Juan P A P, Belen C, Santiago C. A high-performance CMOS feedforward AGC circuit for a WLAN receiver. IEEE Trans Ind Electron, 2010, 57(8): 2851 doi: 10.1109/TIE.2009.2036021
[10]
Cheng X, Yang H G, Gao T Q, et al. A feed-forward AGC Circuits with 48 dB-gain range, 1.2 μs minimum settling time for WiMAX receiver. Analog Integr Cir Sig Process, 2013, 76(1): 61 doi: 10.1007/s10470-013-0076-0
[11]
OKjune J, Robert M F, Brent A M. Analog AGC circuitry for a CMOS WLAN receiver. IEEE J. Solid-State Circuits, 2006, 41(10): 2291 doi: 10.1109/JSSC.2006.881548
[12]
Cheng X, Yang H G, Gao T Q, et al. A CMOS GmC complex filter with re-configurable centre and cutoff frequencies in wimax receivers. J Semicond, 2013, 34(7): 075004 doi: 10.1088/1674-4926/34/7/075004
[13]
Liu J H, Li C, Chen L, et al. An ultra-low power 400 MHz OOK transceiver for medical implanted applications. ESSCIRC, 2011: 175
[14]
Wang X M, Chi N Y, Wang Z H. A low-power high-data-rate ASK IF receiver with a digital-control AGC loop. IEEE Trans Circuits Syst Ⅱ, 2010, 57(8): 617
[15]
Yin Y, Yang Y, Zhang L. A low-power low-cost 780 MHz CMOS FSK receiver for short-range wireless communication. Chin J Electron, 2016, 25(2): 220 doi: 10.1049/cje.2016.03.005
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3890 Times PDF downloads: 51 Times Cited by: 0 Times

    History

    Received: 20 August 2017 Revised: 16 January 2018 Online: Accepted Manuscript: 04 April 2018Uncorrected proof: 12 April 2018Published: 01 July 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Tongqiang Gao, Zhenxiong Chen, Siqi Zhao, Haigang Yang, Xinxia Cai. A BFSK and OOK IF demodulation circuit with 2.8 μs settling time and re-configurable image rejection functions for MICS/BCC applications[J]. Journal of Semiconductors, 2018, 39(7): 075001. doi: 10.1088/1674-4926/39/7/075001 T Q Gao, Z X Chen, S Q Zhao, H G Yang, X X Cai, A BFSK and OOK IF demodulation circuit with 2.8 μs settling time and re-configurable image rejection functions for MICS/BCC applications[J]. J. Semicond., 2018, 39(7): 075001. doi: 10.1088/1674-4926/39/7/075001.Export: BibTex EndNote
      Citation:
      Tongqiang Gao, Zhenxiong Chen, Siqi Zhao, Haigang Yang, Xinxia Cai. A BFSK and OOK IF demodulation circuit with 2.8 μs settling time and re-configurable image rejection functions for MICS/BCC applications[J]. Journal of Semiconductors, 2018, 39(7): 075001. doi: 10.1088/1674-4926/39/7/075001

      T Q Gao, Z X Chen, S Q Zhao, H G Yang, X X Cai, A BFSK and OOK IF demodulation circuit with 2.8 μs settling time and re-configurable image rejection functions for MICS/BCC applications[J]. J. Semicond., 2018, 39(7): 075001. doi: 10.1088/1674-4926/39/7/075001.
      Export: BibTex EndNote

      A BFSK and OOK IF demodulation circuit with 2.8 μs settling time and re-configurable image rejection functions for MICS/BCC applications

      doi: 10.1088/1674-4926/39/7/075001
      More Information
      • Corresponding author: tqgao@mail.ie.ac.cn
      • Received Date: 2017-08-20
      • Revised Date: 2018-01-16
      • Published Date: 2018-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return