SEMICONDUCTOR DEVICES

Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method

Lin Ma, Shiwei Feng, Yamin Zhang, Bing Deng and Yuan Yue

+ Author Affiliations

 Corresponding author: Feng Shiwei, Email:shwfeng@bjut.edu.cn

PDF

Abstract: The effect of drain-source voltage on AlGaAs/InGaAs PHEMTs thermal resistance is studied by experimental measuring and simulation. The result shows that AlGaAs/InGaAs PHEMTs thermal resistance presents a downward trend under the same power dissipation when the drain-source voltage (VDS) is decreased. Moreover, the relatively low VDS and large drain-source current (IDS) result in a lower thermal resistance. The chip-level and package-level thermal resistance have been extracted by the structure function method. The simulation result indicated that the high electric field occurs at the gate contact where the temperature rise occurs. A relatively low VDS leads to a relatively low electric field, which leads to the decline of the thermal resistance.

Key words: AlGaAs/InGaAs PHEMTsstructure function methodthermal resistancedrain-source voltage



[1]
Fanning D, Balistreri A, Beam I EⅡ, et al. High voltage GaAs PHEMT technology for S-band high power amplifiers. CS Mantech Conf, 2007:173
[2]
Zhang Shujing, Yang Ruixia, Gao Xuebang, et al. Large signal modeling of GaAs HFET/PHEMT. Chinese Journal of Semiconductors, 2007, 28(3):439 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=06090508&flag=1
[3]
Green B M, Lan E, Li P, et al. A high power density 26 V GaAs PHEMT technology. IEEE MTT-S International, 2004, 2:817
[4]
Moolji A A, Bahl S R, del Alamo J A, et al. Impact ionization in InAlAs/InGaAs HFET's. IEEE Electron Device Lett, 1994, 15(8):313 doi: 10.1109/55.296227
[5]
Killat N, Kuball M. Temperature assessment of AlGaN/GaN HEMTs:a comparative study by Raman, electrical and IR thermography. IEEE International, 2010:IRPS10-528-530 http://ieeexplore.ieee.org/document/5488777/
[6]
Sarua A, Ji H, Uren M J, et al. Integrated micro-Raman/Infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures. IEEE Trans Electron Devices, 2006, 53(10):2438 doi: 10.1109/TED.2006.882274
[7]
Kovájr J, Jha S K, Jelenkovi E V, et al. Study of temperature distribution in the channels of AlGaN/GaN HEMT devices by μ -haracterization techniques. IEEE ASDAM, 2010, 5666315:123 http://ieeexplore.ieee.org/document/5666315/?reload=true&arnumber=5666315&punumber%3D5653062%26sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:5666309)%26pageNumber%3D2
[8]
Zhang Guangchen, Feng Shiwei, Hu Peifeng, et al. Channel temperature measurement of AlGaN/GaN HEMTs by forward Schottky characteristics. Chin Phys Lett, 2011, 28(1):017201 doi: 10.1088/0256-307X/28/1/017201
[9]
Szekely V. Enhancing reliability with thermal transient testing, Microelectron Reliab, 2002, 42(4/5):629 http://linkinghub.elsevier.com/retrieve/pii/S0026271402000288
[10]
Zhang Yamin, Feng Shiwei, Zhu Hui, et al. Two-dimensional transient simulations of the self-heating effects in GaN-based HEMTs. Microelectron Reliab, 2013, 53:694 doi: 10.1016/j.microrel.2013.02.004
[11]
Rajasingam S, Pomeroy J M, Uren M J, et al. Micro-Raman temperature measurement for electric field assessment in active AlGaN-GaN HFETs. IEEE Electron Device Lett, 2004, 25(7):456 doi: 10.1109/LED.2004.830267
[12]
Hu W D, Chen X S, Quan Z J, et al. Self-heating simulation of GaN-based metal oxide semiconductor high electron mobility transistors including hot electron and quantum effects. J Appl Phys, 2006, 100:074501 doi: 10.1063/1.2354327
Fig. 1.  Schematic diagram of the AlGaAs/InGaAs PHEMT

Fig. 2.  (a) The schematic diagram of the testing system. (b) The sequence diagram of the measurement coefficient. (c) The calibration curve of the forward gate-source voltage of AlGaAs/InGaAs PHEMT with respect to the temperature at current 1.5 mA. (d) The sequence diagram of the testing system

Fig. 3.  The accumulated channel temperature rise curve at $V_{\rm DS}$ being 7, 5, 3 V

Fig. 4.  The structure function of the tested device with $V_{\rm DS}$ being 7, 5, 3 V respectively

Fig. 5.  The device temperature distribution before/after applying $V_{\rm DS}$ = 7 V, $V_{\rm GS}$ = -1.1 V

Fig. 6.  The comparative thermal resistance results of the TSP method and infrared image method, while $V_{\rm DS}$ is varied from 3 to 8 V

Fig. 7.  (a) Schematic diagram of the AlGaAs/InGaAs PHEMT. (b) The simulated result of electric field distributions when the $V_{\rm DS}$ is 7, 5, 3 V respectively

[1]
Fanning D, Balistreri A, Beam I EⅡ, et al. High voltage GaAs PHEMT technology for S-band high power amplifiers. CS Mantech Conf, 2007:173
[2]
Zhang Shujing, Yang Ruixia, Gao Xuebang, et al. Large signal modeling of GaAs HFET/PHEMT. Chinese Journal of Semiconductors, 2007, 28(3):439 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=06090508&flag=1
[3]
Green B M, Lan E, Li P, et al. A high power density 26 V GaAs PHEMT technology. IEEE MTT-S International, 2004, 2:817
[4]
Moolji A A, Bahl S R, del Alamo J A, et al. Impact ionization in InAlAs/InGaAs HFET's. IEEE Electron Device Lett, 1994, 15(8):313 doi: 10.1109/55.296227
[5]
Killat N, Kuball M. Temperature assessment of AlGaN/GaN HEMTs:a comparative study by Raman, electrical and IR thermography. IEEE International, 2010:IRPS10-528-530 http://ieeexplore.ieee.org/document/5488777/
[6]
Sarua A, Ji H, Uren M J, et al. Integrated micro-Raman/Infrared thermography probe for monitoring of self-heating in AlGaN/GaN transistor structures. IEEE Trans Electron Devices, 2006, 53(10):2438 doi: 10.1109/TED.2006.882274
[7]
Kovájr J, Jha S K, Jelenkovi E V, et al. Study of temperature distribution in the channels of AlGaN/GaN HEMT devices by μ -haracterization techniques. IEEE ASDAM, 2010, 5666315:123 http://ieeexplore.ieee.org/document/5666315/?reload=true&arnumber=5666315&punumber%3D5653062%26sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:5666309)%26pageNumber%3D2
[8]
Zhang Guangchen, Feng Shiwei, Hu Peifeng, et al. Channel temperature measurement of AlGaN/GaN HEMTs by forward Schottky characteristics. Chin Phys Lett, 2011, 28(1):017201 doi: 10.1088/0256-307X/28/1/017201
[9]
Szekely V. Enhancing reliability with thermal transient testing, Microelectron Reliab, 2002, 42(4/5):629 http://linkinghub.elsevier.com/retrieve/pii/S0026271402000288
[10]
Zhang Yamin, Feng Shiwei, Zhu Hui, et al. Two-dimensional transient simulations of the self-heating effects in GaN-based HEMTs. Microelectron Reliab, 2013, 53:694 doi: 10.1016/j.microrel.2013.02.004
[11]
Rajasingam S, Pomeroy J M, Uren M J, et al. Micro-Raman temperature measurement for electric field assessment in active AlGaN-GaN HFETs. IEEE Electron Device Lett, 2004, 25(7):456 doi: 10.1109/LED.2004.830267
[12]
Hu W D, Chen X S, Quan Z J, et al. Self-heating simulation of GaN-based metal oxide semiconductor high electron mobility transistors including hot electron and quantum effects. J Appl Phys, 2006, 100:074501 doi: 10.1063/1.2354327
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2313 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 05 December 2013 Revised: 08 April 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Lin Ma, Shiwei Feng, Yamin Zhang, Bing Deng, Yuan Yue. Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method[J]. Journal of Semiconductors, 2014, 35(9): 094006. doi: 10.1088/1674-4926/35/9/094006 L Ma, S W Feng, Y M Zhang, B Deng, Y Yue. Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method[J]. J. Semicond., 2014, 35(9): 094006. doi: 10.1088/1674-4926/35/9/094006.Export: BibTex EndNote
      Citation:
      Lin Ma, Shiwei Feng, Yamin Zhang, Bing Deng, Yuan Yue. Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method[J]. Journal of Semiconductors, 2014, 35(9): 094006. doi: 10.1088/1674-4926/35/9/094006

      L Ma, S W Feng, Y M Zhang, B Deng, Y Yue. Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method[J]. J. Semicond., 2014, 35(9): 094006. doi: 10.1088/1674-4926/35/9/094006.
      Export: BibTex EndNote

      Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method

      doi: 10.1088/1674-4926/35/9/094006
      Funds:

      the National Natural Science Foundation of China 61201046

      the Guangdong Strategic Emerging Industry Project of China 2012A080304003

      the National Natural Science Foundation of China 61376077

      the National Natural Science Foundation of China 61204081

      the Beijing Natural Science Foundation 4122005

      the Beijing Natural Science Foundation 4132022

      the Doctoral Fund of Innovation of Beijing University of Technology 

      Project supported by the National Natural Science Foundation of China (Nos. 61376077, 61201046, 61204081), the Beijing Natural Science Foundation (Nos. 4132022, 4122005), the Guangdong Strategic Emerging Industry Project of China (No. 2012A080304003), and the Doctoral Fund of Innovation of Beijing University of Technology

      More Information
      • Corresponding author: Feng Shiwei, Email:shwfeng@bjut.edu.cn
      • Received Date: 2013-12-05
      • Revised Date: 2014-04-08
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return