SEMICONDUCTOR PHYSICS

Influence of an anisotropic parabolic potential on the quantum dot qubit

Cuilan Zhao, Chunyu Cai and Jinglin Xiao

+ Author Affiliations

 Corresponding author: Xiao Jinglin, Email: xiaojlin@126.com

PDF

Abstract: To study the influence of an anisotropic parabolic potential (APP) on the properties of a quantum dot (QD) qubit, we obtain the eigenenergies and eigenfunctions of the ground and first excited state of an electron, which is strongly coupled to the bulk longitudinal optical (LO) phonons, in a QD under the influence of an APP by the celebrated Lee-Low-Pines (LLP) unitary transformation and the Pekar type variational (PTV) methods. Then, this kind of two-level quantum system can be excogitated to constitute a single qubit. When the electron locates at the superposition state of its related eigenfunctions, we get the time evolution of the electron's probability density. Finally, the influence of an APP on the QD qubit is investigated. The numerical calculations indicate that the probability density will oscillate periodically and it is a decreasing function of the effective confinement lengths of the APP in different directions. Whereas its oscillatory period is an increasing one and will diminish with enhancing the electron-phonon (EP) coupling strength.

Key words: quantum dotsqubitanisotropic parabolic potentialPekar type variational method



[1]
Brunner R, Shin Y S, Obata T, et al. Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. Phys Rev Lett, 2011, 107(14):146801 doi: 10.1103/PhysRevLett.107.146801
[2]
Economou S E, Climente J I, Badolato A, et al. Scalable qubit architecture based on holes in quantum dot molecules. Phys Rev B, 2012, 86(8):085319 doi: 10.1103/PhysRevB.86.085319
[3]
Cao G, Wand L, Tu T, et al. Pulse designed coherent dynamics of a quantum dot charge qubit. Chin Phys Lett, 2012, 29(3):030306 doi: 10.1088/0256-307X/29/3/030306
[4]
Hsieh C Y, Alexandre R, Pawel H. Herzberg circuit and berry's phase in chirality-based coded qubit in a triangular triple quantum dot. Phys Rev B, 2012, 86(11):115312 doi: 10.1103/PhysRevB.86.115312
[5]
Kristiaan D G, McMahon P L, Press D, et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat Phys, 2011, 7(11):872 doi: 10.1038/nphys2078
[6]
Shi Z, Simmons C B, Prance J R, et al. Fast hybrid silicon double-quantum-dot qubit. Phys Rev Lett, 2012, 108(14):140503 doi: 10.1103/PhysRevLett.108.140503
[7]
Puri S, Kim N Y, Yamamoto Y. Two-qubit geometric phase gate for quantum dot spins using cavity polariton resonance. Phys Rev B, 2012, 85(24):241403 doi: 10.1103/PhysRevB.85.241403
[8]
Seigneur H P, Gonzalez G, Leuenberger M N, et al. Dynamics of entanglement between a quantum dot spin qubit and a photon qubit inside a semiconductor high-Q nanocavity. Adv Math Phys, 2010, 2010:342915 http://emis.library.cornell.edu/journals/HOA/AMP/Volume2010/342915.pdf
[9]
Wang Z W, Li W P, Yin J W, et al. Properties of parabolic linear bound potential and coulomb bound potential quantum dot qubit. Commun Theor Phys, 2008, 49(2):311 doi: 10.1088/0253-6102/49/2/12
[10]
Yin J W, Xiao J L, Yu Y F, et al. The influence of electric field on a parabolic quantum dot qubit. Chin Phys B, 2009, 18(2):446 doi: 10.1088/1674-1056/18/2/012
[11]
Li W P, Yin J W, Yu Y F, et al. The effect of magnetic on the properties of a parabolic quantum dot qubit. J Low Temp Phys, 2010, 160(3):112 doi: 10.1007%2Fs10909-010-0180-9.pdf
[12]
Chen S H, Xiao J L. Properties of unsymmetrical parabolic confinement potential quantum dot qubit. Commun Theory Phys, 2009, 50(6):1287 doi: 10.1007/s11128-013-0631-8
[13]
Xiao W, Xiao J L. Coulomb bound potential quantum rod qubit. Superlattice Microst, 2012, 52(4):851 doi: 10.1016/j.spmi.2012.07.010
[14]
Lee T D, Low F E, Pines D. The motion of slow electrons in a polar crystal. Phys Rev, 1953, 90(2):297 doi: 10.1103/PhysRev.90.297
[15]
Landau L D, Pekar S I. Polaron effective mass. Zh Eksp Teor Fiz, 1948, 18(5):419
Fig. 1.  Time evolution laws of the electron's probability density when it is located in a fixed coordinate point and the superposition state.

Fig. 2.  The electron's oscillating period as a function of the EP coupling strength for different values of $l_{3}$.

Fig. 3.  The electron's state energies as a function of the EP coupling strength for different values of $l_{3}$.

[1]
Brunner R, Shin Y S, Obata T, et al. Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot. Phys Rev Lett, 2011, 107(14):146801 doi: 10.1103/PhysRevLett.107.146801
[2]
Economou S E, Climente J I, Badolato A, et al. Scalable qubit architecture based on holes in quantum dot molecules. Phys Rev B, 2012, 86(8):085319 doi: 10.1103/PhysRevB.86.085319
[3]
Cao G, Wand L, Tu T, et al. Pulse designed coherent dynamics of a quantum dot charge qubit. Chin Phys Lett, 2012, 29(3):030306 doi: 10.1088/0256-307X/29/3/030306
[4]
Hsieh C Y, Alexandre R, Pawel H. Herzberg circuit and berry's phase in chirality-based coded qubit in a triangular triple quantum dot. Phys Rev B, 2012, 86(11):115312 doi: 10.1103/PhysRevB.86.115312
[5]
Kristiaan D G, McMahon P L, Press D, et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat Phys, 2011, 7(11):872 doi: 10.1038/nphys2078
[6]
Shi Z, Simmons C B, Prance J R, et al. Fast hybrid silicon double-quantum-dot qubit. Phys Rev Lett, 2012, 108(14):140503 doi: 10.1103/PhysRevLett.108.140503
[7]
Puri S, Kim N Y, Yamamoto Y. Two-qubit geometric phase gate for quantum dot spins using cavity polariton resonance. Phys Rev B, 2012, 85(24):241403 doi: 10.1103/PhysRevB.85.241403
[8]
Seigneur H P, Gonzalez G, Leuenberger M N, et al. Dynamics of entanglement between a quantum dot spin qubit and a photon qubit inside a semiconductor high-Q nanocavity. Adv Math Phys, 2010, 2010:342915 http://emis.library.cornell.edu/journals/HOA/AMP/Volume2010/342915.pdf
[9]
Wang Z W, Li W P, Yin J W, et al. Properties of parabolic linear bound potential and coulomb bound potential quantum dot qubit. Commun Theor Phys, 2008, 49(2):311 doi: 10.1088/0253-6102/49/2/12
[10]
Yin J W, Xiao J L, Yu Y F, et al. The influence of electric field on a parabolic quantum dot qubit. Chin Phys B, 2009, 18(2):446 doi: 10.1088/1674-1056/18/2/012
[11]
Li W P, Yin J W, Yu Y F, et al. The effect of magnetic on the properties of a parabolic quantum dot qubit. J Low Temp Phys, 2010, 160(3):112 doi: 10.1007%2Fs10909-010-0180-9.pdf
[12]
Chen S H, Xiao J L. Properties of unsymmetrical parabolic confinement potential quantum dot qubit. Commun Theory Phys, 2009, 50(6):1287 doi: 10.1007/s11128-013-0631-8
[13]
Xiao W, Xiao J L. Coulomb bound potential quantum rod qubit. Superlattice Microst, 2012, 52(4):851 doi: 10.1016/j.spmi.2012.07.010
[14]
Lee T D, Low F E, Pines D. The motion of slow electrons in a polar crystal. Phys Rev, 1953, 90(2):297 doi: 10.1103/PhysRev.90.297
[15]
Landau L D, Pekar S I. Polaron effective mass. Zh Eksp Teor Fiz, 1948, 18(5):419
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2128 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 08 May 2013 Revised: 03 June 2013 Online: Published: 01 November 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Cuilan Zhao, Chunyu Cai, Jinglin Xiao. Influence of an anisotropic parabolic potential on the quantum dot qubit[J]. Journal of Semiconductors, 2013, 34(11): 112002. doi: 10.1088/1674-4926/34/11/112002 C L Zhao, C Y Cai, J L Xiao. Influence of an anisotropic parabolic potential on the quantum dot qubit[J]. J. Semicond., 2013, 34(11): 112002. doi: 10.1088/1674-4926/34/11/112002.Export: BibTex EndNote
      Citation:
      Cuilan Zhao, Chunyu Cai, Jinglin Xiao. Influence of an anisotropic parabolic potential on the quantum dot qubit[J]. Journal of Semiconductors, 2013, 34(11): 112002. doi: 10.1088/1674-4926/34/11/112002

      C L Zhao, C Y Cai, J L Xiao. Influence of an anisotropic parabolic potential on the quantum dot qubit[J]. J. Semicond., 2013, 34(11): 112002. doi: 10.1088/1674-4926/34/11/112002.
      Export: BibTex EndNote

      Influence of an anisotropic parabolic potential on the quantum dot qubit

      doi: 10.1088/1674-4926/34/11/112002
      Funds:

      Project supported by the National Natural Science Foundation of China (No. 10964005)

      the National Natural Science Foundation of China 10964005

      More Information
      • Corresponding author: Xiao Jinglin, Email: xiaojlin@126.com
      • Received Date: 2013-05-08
      • Revised Date: 2013-06-03
      • Published Date: 2013-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return