SEMICONDUCTOR MATERIALS

Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method

Zhitao Han1, 2, Sisi Li2, Jinkui Chu1 and Yong Chen2,

+ Author Affiliations

 Corresponding author: Chen Yong, Email:yong.chen75005@ens.fr

PDF

Abstract: Well-aligned ZnO nanowires were hydrothermally synthesized based on a facile method for preparing the ZnO seed layer which was derived from the combination of a sol-gel process and the spin-coating technique. The effect of the contents of growth solution and the growth duration on the morphology of ZnO nanowires has been investigated. The results indicated that long and vertically aligned ZnO nanowires could be obtained by adjusting the contents of ammonia and polyethyleneimine (PEI) in the growth solution. Under the optimized condition, the length of ZnO nanowires increased fast and almost linearly with the growth duration. After 10 h incubation, ZnO nanowires more than 25 μm in length were obtained. By combining the conventional photolithographic method with this hydrothermal approach, long and well-aligned ZnO nanowire arrays were selectively grown on the substrate. In addition, the bottom fusion at the foot of the nanowires has been obviously improved. The results demonstrated that the improved hydrothermal process is favorable to synthesize long and well-aligned ZnO nanowires, and possesses good process compatibility with the conventional photolithographic technique for preparing ZnO nanowire arrays. So it has great potential in applications such as display and field emission devices.

Key words: ZnOnanowireshydrothermalphotolithography



[1]
Han X G, He H Z, Kuang Q, et al. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J Phys Chem C, 2009, 113(2):584 doi: 10.1021/jp808233e
[2]
Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nature Mater, 2005, 4(6):455 doi: 10.1038/nmat1387
[3]
Chu D, Masuda Y, Ohji T, et al. Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir, 2010, 26(4):2811 doi: 10.1021/la902866a
[4]
Jun J H, Seong H, Cho K, et al. Ultraviolet photodetectors based on ZnO nanoparticles. Ceramics International, 2009, 35(7):2797 doi: 10.1016/j.ceramint.2009.03.032
[5]
Chen H, Liu Y, Xie C S, et al. A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceramics International, 2012, 38(1):503 doi: 10.1016/j.ceramint.2011.07.035
[6]
Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523):1897 doi: 10.1126/science.1060367
[7]
Zhang Y A, Wu C X, Zheng Y, et al. Synthesis and efficient field emission characteristics of patterned ZnO nanowires. Journal of Semiconductors, 2012, 33(2):023001 doi: 10.1088/1674-4926/33/2/023001
[8]
Li S Y, Lee C Y, Tseng T Y, et al. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J Cryst Growth, 2003, 247(3/4):357 https://ir.nctu.edu.tw/handle/11536/28228?locale=en
[9]
Deng H, Tang B, Cheng H, et al. Horizontal growth and ultraviolet sensitivity characteristics of ZnO nanowires on sapphire substrates. Chinese Journal of Semiconductors, 2007, 28(1):56 http://www.oalib.com/paper/1522959
[10]
Lee D J, Park J Y, Yun Y S, et al. Comparative studies on the growth behavior of ZnO nanorods by metal organic chemical vapor deposition depending on the type of substrates. J Cryst Growth, 2005, 276(3/4):458
[11]
Premkumar T, Zhou Y S, Lu Y F, et al. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition. J Appl Mater Interfaces, 2010, 2(10):2863 doi: 10.1021/am100539q
[12]
Tian J H, Hu J, Li S S, et al. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology, 2011, 22:245601 doi: 10.1088/0957-4484/22/24/245601
[13]
Zhang L L, Guo C X, Chen J G, et al. Solution growth of morphology controllable ZnO one-dimensional nanorods and microrods. Chinese Journal of Semiconductors, 2005, 26(11):2127
[14]
Xu S, Lao C S, Weintraub B, et al. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J Mater Res, 2008, 23(8):2072 doi: 10.1557/JMR.2008.0274
[15]
Greene L E, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed, 2003, 42(26):3031 doi: 10.1002/anie.200351461
[16]
Greene L E, Law M, Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett, 2005, 5(7):1231 doi: 10.1021/nl050788p
[17]
Kanjwal M A, Sheikh F A, Barajat N A M, et al. Zinc oxide's hierarchical nanostructure and its photocatalytic properties. Appl Surf Sci, 2012, 258(8):36953702 http://orbit.dtu.dk/files/6497014/science%5B1%5D.pdf
[18]
Li Y H, Gong J, Deng Y L. Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights. Sensors and Actuators A, 2010, 158(2):176 doi: 10.1016/j.sna.2009.12.030
[19]
Park J Y, Kim S S. Growth of nanograins in electrospun ZnO nanofibers. J Am Ceram Soc, 2009, 92(8):1691 doi: 10.1111/jace.2009.92.issue-8
[20]
Xu C K, Shin P, Cao L L, et al. Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J Phys Chem C, 2010, 114(1):125 doi: 10.1021/jp9085415
[21]
Kartawidjaja F C, Lim Z Y, Ng S L G, et al. Morphology, optical, and magnetic properties of Zn1-xCoxO nanorods grown via a wet chemical route. J Am Ceram Soc, 2009, 93(11):3798
[22]
Strom J G, Jun H W. Kinetics of hydrolysis of methenamine. J Pharm Sci, 1980, 69(11):1261 doi: 10.1002/jps.2600691107
[23]
Govender K, Boyle D S, Kenway P B, et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J Mater Chem, 2004, 14:2575 doi: 10.1039/B404784B
[24]
Greene L E, Yuhas B D, Law M, et al. Solution-grown zinc oxide nanowires. Inorg Chem, 2006, 45(19):7535 doi: 10.1021/ic0601900
[25]
Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J Mater Chem, 2002, 12:3773 doi: 10.1039/b205384e
[26]
Wu W B, Hu G D, Cui S G, et al. Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route. Cryst Growth Des, 2008, 8(11):4014 doi: 10.1021/cg800210m
Fig. 1.  (a) AFM image and (b) XRD patterns of the ZnO seed layer prepared on the Si substrate.

Fig. 2.  The morphology of the ZnO nanowire is plotted as a function of the content of ammonia in the growth solution: (a) length, (b) diameter, (c) aspect ratio and density. The insert in (a) is a tilted-view SEM image of ZnO nanowires grown for 3 h with 1.25 mL ammonia in the growth solution.

Fig. 3.  The morphology of a ZnO nanowire is plotted as a function of the content of PEI in the growth solution: (a) length, (b) diameter, (c) aspect ratio and density. The insert in (a) is a tilted-view SEM image of ZnO nanowires grown for 3 h with 0.075 g PEI in the growth solution.

Fig. 4.  SEM images of ZnO nanowires verses the growth duration: (a, f) 2 h, (b, g) 4 h, (c, h) 6 h, (d, i) 8 h, (e, j) 10 h. (a-e) are cross-sectional-view SEM images and (f-j) are top-view SEM images.

Fig. 5.  ZnO nanowire length and density are plotted as a function of growth duration. The growth solution contains zinc nitrate hexahydrate (25 mM), HMTA (12.5 mM), NH$_{3}$$\cdot $H$_{2}$O (1.2 mL) and PEI (0.75 g).

Fig. 6.  The schematic of the fabrication process for selective growth of ZnO nanowires on the Si substrate.

Fig. 7.  SEM images of patterned ZnO nanowire arrays. The patterned size of the seed area on the substrate is 12 $\mu $m for (a, b) and 24 $\mu $m for (c, d). The growth duration is 6 h for (a, c) and 12 h for (b, d). The insets are high-magnification cross-sectional views.

[1]
Han X G, He H Z, Kuang Q, et al. Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J Phys Chem C, 2009, 113(2):584 doi: 10.1021/jp808233e
[2]
Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nature Mater, 2005, 4(6):455 doi: 10.1038/nmat1387
[3]
Chu D, Masuda Y, Ohji T, et al. Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir, 2010, 26(4):2811 doi: 10.1021/la902866a
[4]
Jun J H, Seong H, Cho K, et al. Ultraviolet photodetectors based on ZnO nanoparticles. Ceramics International, 2009, 35(7):2797 doi: 10.1016/j.ceramint.2009.03.032
[5]
Chen H, Liu Y, Xie C S, et al. A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature. Ceramics International, 2012, 38(1):503 doi: 10.1016/j.ceramint.2011.07.035
[6]
Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523):1897 doi: 10.1126/science.1060367
[7]
Zhang Y A, Wu C X, Zheng Y, et al. Synthesis and efficient field emission characteristics of patterned ZnO nanowires. Journal of Semiconductors, 2012, 33(2):023001 doi: 10.1088/1674-4926/33/2/023001
[8]
Li S Y, Lee C Y, Tseng T Y, et al. Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. J Cryst Growth, 2003, 247(3/4):357 https://ir.nctu.edu.tw/handle/11536/28228?locale=en
[9]
Deng H, Tang B, Cheng H, et al. Horizontal growth and ultraviolet sensitivity characteristics of ZnO nanowires on sapphire substrates. Chinese Journal of Semiconductors, 2007, 28(1):56 http://www.oalib.com/paper/1522959
[10]
Lee D J, Park J Y, Yun Y S, et al. Comparative studies on the growth behavior of ZnO nanorods by metal organic chemical vapor deposition depending on the type of substrates. J Cryst Growth, 2005, 276(3/4):458
[11]
Premkumar T, Zhou Y S, Lu Y F, et al. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition. J Appl Mater Interfaces, 2010, 2(10):2863 doi: 10.1021/am100539q
[12]
Tian J H, Hu J, Li S S, et al. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology, 2011, 22:245601 doi: 10.1088/0957-4484/22/24/245601
[13]
Zhang L L, Guo C X, Chen J G, et al. Solution growth of morphology controllable ZnO one-dimensional nanorods and microrods. Chinese Journal of Semiconductors, 2005, 26(11):2127
[14]
Xu S, Lao C S, Weintraub B, et al. Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J Mater Res, 2008, 23(8):2072 doi: 10.1557/JMR.2008.0274
[15]
Greene L E, Law M, Goldberger J, et al. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed, 2003, 42(26):3031 doi: 10.1002/anie.200351461
[16]
Greene L E, Law M, Tan D H, et al. General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett, 2005, 5(7):1231 doi: 10.1021/nl050788p
[17]
Kanjwal M A, Sheikh F A, Barajat N A M, et al. Zinc oxide's hierarchical nanostructure and its photocatalytic properties. Appl Surf Sci, 2012, 258(8):36953702 http://orbit.dtu.dk/files/6497014/science%5B1%5D.pdf
[18]
Li Y H, Gong J, Deng Y L. Hierarchical structured ZnO nanorods on ZnO nanofibers and their photoresponse to UV and visible lights. Sensors and Actuators A, 2010, 158(2):176 doi: 10.1016/j.sna.2009.12.030
[19]
Park J Y, Kim S S. Growth of nanograins in electrospun ZnO nanofibers. J Am Ceram Soc, 2009, 92(8):1691 doi: 10.1111/jace.2009.92.issue-8
[20]
Xu C K, Shin P, Cao L L, et al. Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. J Phys Chem C, 2010, 114(1):125 doi: 10.1021/jp9085415
[21]
Kartawidjaja F C, Lim Z Y, Ng S L G, et al. Morphology, optical, and magnetic properties of Zn1-xCoxO nanorods grown via a wet chemical route. J Am Ceram Soc, 2009, 93(11):3798
[22]
Strom J G, Jun H W. Kinetics of hydrolysis of methenamine. J Pharm Sci, 1980, 69(11):1261 doi: 10.1002/jps.2600691107
[23]
Govender K, Boyle D S, Kenway P B, et al. Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J Mater Chem, 2004, 14:2575 doi: 10.1039/B404784B
[24]
Greene L E, Yuhas B D, Law M, et al. Solution-grown zinc oxide nanowires. Inorg Chem, 2006, 45(19):7535 doi: 10.1021/ic0601900
[25]
Yamabi S, Imai H. Growth conditions for wurtzite zinc oxide films in aqueous solutions. J Mater Chem, 2002, 12:3773 doi: 10.1039/b205384e
[26]
Wu W B, Hu G D, Cui S G, et al. Epitaxy of vertical ZnO nanorod arrays on highly (001)-oriented ZnO seed monolayer by a hydrothermal route. Cryst Growth Des, 2008, 8(11):4014 doi: 10.1021/cg800210m
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3007 Times PDF downloads: 37 Times Cited by: 0 Times

    History

    Received: 24 December 2012 Revised: 08 January 2013 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhitao Han, Sisi Li, Jinkui Chu, Yong Chen. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method[J]. Journal of Semiconductors, 2013, 34(6): 063002. doi: 10.1088/1674-4926/34/6/063002 Z T Han, S S Li, J K Chu, Y Chen. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method[J]. J. Semicond., 2013, 34(6): 063002. doi: 10.1088/1674-4926/34/6/063002.Export: BibTex EndNote
      Citation:
      Zhitao Han, Sisi Li, Jinkui Chu, Yong Chen. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method[J]. Journal of Semiconductors, 2013, 34(6): 063002. doi: 10.1088/1674-4926/34/6/063002

      Z T Han, S S Li, J K Chu, Y Chen. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method[J]. J. Semicond., 2013, 34(6): 063002. doi: 10.1088/1674-4926/34/6/063002.
      Export: BibTex EndNote

      Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method

      doi: 10.1088/1674-4926/34/6/063002
      Funds:

      Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CB302101, 2011CB302105)

      the State Key Development Program for Basic Research of China 2011CB302105

      the State Key Development Program for Basic Research of China 2011CB302101

      More Information
      • Corresponding author: Chen Yong, Email:yong.chen75005@ens.fr
      • Received Date: 2012-12-24
      • Revised Date: 2013-01-08
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return