J. Semicond. >  In Press >  doi: 10.1088/1674-4926/23120025

ARTICLES

Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials

Shuo Deng1, Mengxi Cui1, Jingru Jiang1, Chuang Wang1, Zengguang Cheng3, Huajun Sun1, 2, Ming Xu1, 2, Hao Tong1, 2, Qiang He1, 2, and Xiangshui Miao1, 2

+ Author Affiliations

 Corresponding author: Qiang He, qianghe@hust.edu.cn

PDF

Turn off MathJax

Abstract: All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials (PCMs) and CaF2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies.

Key words: structural colorreconfigurableall-dielectric metasurfacesphase change material



[1]
Lee T, Jang J, Jeong H, et al. Plasmonic- and dielectric-based structural coloring: From fundamentals to practical applications. Nano Converg, 2018, 5, 1 doi: 10.1186/s40580-017-0133-y
[2]
Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours. Chem Soc Rev, 2016, 45, 6698 doi: 10.1039/C6CS00129G
[3]
Uddin M J, Magnusson R. Highly efficient color filter array using resonant Si3N4 gratings. Opt Express, 2013, 21, 12495 doi: 10.1364/OE.21.012495
[4]
Shrestha V R, Lee S S, Kim E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett, 2014, 14, 6672 doi: 10.1021/nl503353z
[5]
Sun S, Zhou Z X, Zhang C, et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 2017, 11, 4445 doi: 10.1021/acsnano.7b00415
[6]
Li X, Chen Q M, Zhang X, et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto Electron Adv, 2023, 6, 220060 doi: 10.29026/oea.2023.220060
[7]
Qu Y R, Li Q, Du K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev, 2017, 11, 1700091 doi: 10.1002/lpor.201700091
[8]
Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 2014, 511, 206 doi: 10.1038/nature13487
[9]
He Q, Youngblood N, Cheng Z G, et al. Dynamically tunable transmissive color filters using ultra-thin phase change materials. Opt Express, 2020, 28, 39841 doi: 10.1364/OE.411874
[10]
Ollanik A J, Oguntoye I, Ji Y P, et al. Resonance tuning for dynamic Huygens metasurfaces. J Opt Soc Am B, 2021, 38, C105 doi: 10.1364/JOSAB.427848
[11]
Leitis A, Hessler A, Wahl S, et al. All-dielectric programmable Huygens' metasurfaces. Adv Funct Materials, 2020, 30, 1910259 doi: 10.1002/adfm.201910259
[12]
Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto Electron Adv, 2022, 5, 200098 doi: 10.29026/oea.2022.200098
[13]
Kaissner R, Li J X, Lu W Z, et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci Adv, 2021, 7 doi: 10.1126/sciadv.abd9450
[14]
Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett, 2016, 16, 2818 doi: 10.1021/acs.nanolett.6b00618
[15]
Yang W H, Xiao S M, Song Q H, et al. All-dielectric metasurface for high-performance structural color. Nat Commun, 2020, 11, 1864 doi: 10.1038/s41467-020-15773-0
[16]
Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 2016, 10, 60 doi: 10.1038/nphoton.2015.247
[17]
Shu F Z, Wang J N, Peng R W, et al. Electrically driven tunable broadband polarization states via active metasurfaces based on joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev, 2021, 15, 2100155 doi: 10.1002/lpor.202100155
[18]
Saifullah Y, He Y J, Boag A, et al. Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications. Adv Sci, 2022, 9, 2203747 doi: 10.1002/advs.202203747
[19]
Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv, 2019, 5, eaaw2687 doi: 10.1126/sciadv.aaw2687
[20]
Gerislioglu B, Bakan G, Ahuja R, et al. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater Today Phys, 2020, 12, 100178 doi: 10.1016/j.mtphys.2020.100178
[21]
Vassalini I, Alessandri I, de Ceglia D. Stimuli-responsive phase change materials: Optical and optoelectronic applications. Materials, 2021, 14, 3396 doi: 10.3390/ma14123396
[22]
Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv Mater, 2020, 32, 1908194 doi: 10.1002/adma.201908194
[23]
Carrillo S G C, Trimby L, Au Y Y, et al. A nonvolatile phase-change metamaterial color display. Adv Opt Mater, 2019, 7, 1801782 doi: 10.1002/adom.201801782
[24]
Ruiz de Galarreta C, Sinev I, Alexeev A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 2020, 7, 476 doi: 10.1364/OPTICA.384138
[25]
Rui G H, Ding C C, Gu B, et al. Symmetric Ge2Sb2Te5 based metamaterial absorber induced dynamic wide-gamut structural color. J Opt, 2020, 22, 085003 doi: 10.1088/2040-8986/aba138
[26]
Lu L, Dong Z G, Tijiptoharsono F, et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano, 2021, 15, 19722 doi: 10.1021/acsnano.1c07114
[27]
Santos G, Losurdo M, Moreno F, et al. Directional scattering switching from an all-dielectric phase change metasurface. Nanomaterials, 2023, 13, 496 doi: 10.3390/nano13030496
[28]
Moitra P, Wang Y Z, Liang X N, et al. Programmable wavefront control in the visible spectrum using low-loss chalcogenide phase-change metasurfaces. Adv Mater, 2023, 35, e2205367 doi: 10.1002/adma.202205367
[29]
Prabhathan P, Sreekanth K V, Teng J H, et al. Electrically tunable steganographic nano-optical coatings. Nano Lett, 2023, 23, 5236 doi: 10.1021/acs.nanolett.3c01244
[30]
Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv Sci, 2018, 5, 1800835 doi: 10.1002/advs.201800835
[31]
Shu F Z, Yu F F, Peng R W, et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater, 2018, 6, 1700939 doi: 10.1002/adom.201700939
[32]
Jia Z Y, Shu F Z, Gao Y J, et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Phys Rev Appl, 2018, 9, 034009 doi: 10.1103/PhysRevApplied.9.034009
[33]
Choi Y C, Lee D U, Noh J H, et al. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Funct Mater, 2014, 24, 3587 doi: 10.1002/adfm.201304238
[34]
Yu D Y W, Prikhodchenko P V, Mason C W, et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun, 2013, 4, 2922 doi: 10.1038/ncomms3922
[35]
Ito S, Tanaka S, Manabe K, et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C, 2014, 118, 16995 doi: 10.1021/jp500449z
[36]
Wu P C, Pala R A, Kafaie Shirmanesh G, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nat Commun, 2019, 10, 3654 doi: 10.1038/s41467-019-11598-8
[37]
Shcherbakov M R, Liu S, Zubyuk V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun, 2017, 8, 17 doi: 10.1038/s41467-017-00019-3
[38]
Chýlek P, Zhan J. Absorption and scattering of light by small particles: The interference structure. Appl Opt, 1990, 29, 3984 doi: 10.1364/AO.29.003984
[39]
Lewin L. The electrical constants of a material loaded with spherical particles. J Inst Electr Eng Part I Gen, 1947, 94, 186 doi: 10.1049/ji-1.1947.0057
[40]
Moon C W, Kim Y, Hyun J K. Active electrochemical high-contrast gratings as on/off switchable and color tunable pixels. Nat Commun, 2022, 13, 3391 doi: 10.1038/s41467-022-31083-z
[41]
Yang W H, Qu G Y, Lai F X, et al. Dynamic bifunctional metasurfaces for holography and color display. Adv Mater, 2021, 33, e2101258 doi: 10.1002/adma.202101258
[42]
Song M W, Feng L, Huo P C, et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat Nanotechnol, 2023, 18, 71 doi: 10.1038/s41565-022-01256-4
Fig. 1.  (Color online) Working principle and the schematic of the proposed tunable metasurface. (a) The schematic of the metasurfaces. The left and right figures respectively illustrate the reflection and transmission colors of the metasurface in the amorphous and crystalline states under TM polarization light. (b) The single unit of the device, consisting of elliptical column Sb2S3 and CF2 as substrate. Rx and Ry represent the major and minor axes of the cylindrical structure respectively, while Tx and Ty are the periodicity of the single unit in the two directions. Additionally, tpcm corresponds to the thickness of the phase change material. (c) Refractive index (blue) and the absorption coefficient (red) of amorphous Sb2S3 (solid line) and crystalline Sb2S3 (dash line) in wavelength between 400 and 800 nm.

Fig. 2.  (Color online) The numerical simulation with Ry changing from 10 to 90 nm (from bottom to top). (a), (b) The reflection spectra of the device in amorphous (a) and crystalline state (b) respectively in TM polarization mode. Panel (c) shows Δλ when the PCMs change from amorphous to crystalline. (d), (e) The reflection spectra of the device in amorphous (d) and crystalline state (e) respectively in TE polarization mode. (f) The CIE1931 plot numerically calculated structural color palettes of amorphous (green) and crystalline (red) states under TM (stars) and TE (circles) polarized wave.

Fig. 3.  (Color online) The numerical simulation with Rx changing from 90 to 170 nm (from bottom to top). (a), (b) The reflection spectra of the device in amorphous (a) and crystalline state (b) respectively in TM polarization mode. Panel (c) shows Δλ when the PCM change from amorphous to crystalline. (d), (e) The reflection spectra of the device in amorphous (d) and crystalline state (e) respectively in TE polarization mode. (f) The CIE1931 plot numerically calculated structural color palettes of amorphous (green) and crystalline (red) state under TM (stars) and TE (circles) polarized wave.

Fig. 4.  (Color online) The numerical simulation with Tx and Ty changing from 300 to 400 nm (from bottom to top). (a), (b) The reflection (a) and transmission (b) spectra of the metasurface in amorphous with changing Ty in TM polarization mode. (c) The CIE1931 plot numerically calculated structural color palettes of reflection (green) and transmission (red). The reflection (d) and transmission (e) spectra of the metasurface in amorphous with changing Tx in TM polarization mode. (f) The CIE1931 plot numerically calculated structural color palettes of reflection (green) and transmission (red).

Fig. 5.  (Color online) The electromagnetic multipole decomposition of reflection spectra in TM Mode with fixed periodicity Tx = Ty = 350 nm and tpcm = 120 nm. Different results of three structure geometry in atmosphere (a), (b), (c) and crystalline (d), their structural parameters are (a), (d) Rx/Ry of 130/30 nm, (b) Rx/Ry of 130/60 nm, (c) Rx/Ry of 170/30 nm.

Fig. 6.  (Color online) The electromagnetic simulation of single unit. Panel (a) shows the single unit whose structural parameters are Rx/Ry/Tx/Ty/tpcm of 130/30/350/350/120 nm. (b) Reflection spectra of the metasurfaces under TM (left) and TE (right) polarized waves. (c), (d) Electromagnetic field distributions of electric dipole mode and magnetic dipole mode in an amorphous and crystalline state in TE and TM polarization mode. Here the wavelength is 561.5 nm.

Table 1.   Comparison with existing structure color designs (simulation#, experiment*).

Method Tunable or not Tuning mechanism Tuning ability Color gamut Display mode Reflectance and transmittance References
Gratings Yes Electrochemical ~97% contrast 72% sRGB Reflective ~80% reflectance* Nat Commun[40]
Metasurface
(nanopillars)
Yes Liquid Gamut improvement 78%−181.8% sRGB Reflective ~80% reflectance* Nat Commun[15]
Multilayer and Metasurface Yes Phase change material ~40% contrast 74% sRGB Reflective ~50% reflectance# J Opt[25]
Metasurface
(nanopillars)
No / / 121% sRGB Reflective ~50% reflectance* Adv Mater[41]
Metasurface
(nanopores)
No / / 148% sRGB Reflective ~65% reflectance* Nat Nanotechnol[42]
Metasurface
(nanopillars)
Yes Phase change material and polarization ~80% contrast and ~100 nm Δλ 70% sRGB Reflective and transmissive ~85% reflectance and ~90 transmittance# This work
DownLoad: CSV
[1]
Lee T, Jang J, Jeong H, et al. Plasmonic- and dielectric-based structural coloring: From fundamentals to practical applications. Nano Converg, 2018, 5, 1 doi: 10.1186/s40580-017-0133-y
[2]
Dumanli A G, Savin T. Recent advances in the biomimicry of structural colours. Chem Soc Rev, 2016, 45, 6698 doi: 10.1039/C6CS00129G
[3]
Uddin M J, Magnusson R. Highly efficient color filter array using resonant Si3N4 gratings. Opt Express, 2013, 21, 12495 doi: 10.1364/OE.21.012495
[4]
Shrestha V R, Lee S S, Kim E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array. Nano Lett, 2014, 14, 6672 doi: 10.1021/nl503353z
[5]
Sun S, Zhou Z X, Zhang C, et al. All-dielectric full-color printing with TiO2 metasurfaces. ACS Nano, 2017, 11, 4445 doi: 10.1021/acsnano.7b00415
[6]
Li X, Chen Q M, Zhang X, et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto Electron Adv, 2023, 6, 220060 doi: 10.29026/oea.2023.220060
[7]
Qu Y R, Li Q, Du K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev, 2017, 11, 1700091 doi: 10.1002/lpor.201700091
[8]
Hosseini P, Wright C D, Bhaskaran H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature, 2014, 511, 206 doi: 10.1038/nature13487
[9]
He Q, Youngblood N, Cheng Z G, et al. Dynamically tunable transmissive color filters using ultra-thin phase change materials. Opt Express, 2020, 28, 39841 doi: 10.1364/OE.411874
[10]
Ollanik A J, Oguntoye I, Ji Y P, et al. Resonance tuning for dynamic Huygens metasurfaces. J Opt Soc Am B, 2021, 38, C105 doi: 10.1364/JOSAB.427848
[11]
Leitis A, Hessler A, Wahl S, et al. All-dielectric programmable Huygens' metasurfaces. Adv Funct Materials, 2020, 30, 1910259 doi: 10.1002/adfm.201910259
[12]
Zeng C, Lu H, Mao D, et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto Electron Adv, 2022, 5, 200098 doi: 10.29026/oea.2022.200098
[13]
Kaissner R, Li J X, Lu W Z, et al. Electrochemically controlled metasurfaces with high-contrast switching at visible frequencies. Sci Adv, 2021, 7 doi: 10.1126/sciadv.abd9450
[14]
Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett, 2016, 16, 2818 doi: 10.1021/acs.nanolett.6b00618
[15]
Yang W H, Xiao S M, Song Q H, et al. All-dielectric metasurface for high-performance structural color. Nat Commun, 2020, 11, 1864 doi: 10.1038/s41467-020-15773-0
[16]
Wang Q, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat Photonics, 2016, 10, 60 doi: 10.1038/nphoton.2015.247
[17]
Shu F Z, Wang J N, Peng R W, et al. Electrically driven tunable broadband polarization states via active metasurfaces based on joule-heat-induced phase transition of vanadium dioxide. Laser Photonics Rev, 2021, 15, 2100155 doi: 10.1002/lpor.202100155
[18]
Saifullah Y, He Y J, Boag A, et al. Recent progress in reconfigurable and intelligent metasurfaces: A comprehensive review of tuning mechanisms, hardware designs, and applications. Adv Sci, 2022, 9, 2203747 doi: 10.1002/advs.202203747
[19]
Farmakidis N, Youngblood N, Li X, et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci Adv, 2019, 5, eaaw2687 doi: 10.1126/sciadv.aaw2687
[20]
Gerislioglu B, Bakan G, Ahuja R, et al. The role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices. Mater Today Phys, 2020, 12, 100178 doi: 10.1016/j.mtphys.2020.100178
[21]
Vassalini I, Alessandri I, de Ceglia D. Stimuli-responsive phase change materials: Optical and optoelectronic applications. Materials, 2021, 14, 3396 doi: 10.3390/ma14123396
[22]
Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv Mater, 2020, 32, 1908194 doi: 10.1002/adma.201908194
[23]
Carrillo S G C, Trimby L, Au Y Y, et al. A nonvolatile phase-change metamaterial color display. Adv Opt Mater, 2019, 7, 1801782 doi: 10.1002/adom.201801782
[24]
Ruiz de Galarreta C, Sinev I, Alexeev A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica, 2020, 7, 476 doi: 10.1364/OPTICA.384138
[25]
Rui G H, Ding C C, Gu B, et al. Symmetric Ge2Sb2Te5 based metamaterial absorber induced dynamic wide-gamut structural color. J Opt, 2020, 22, 085003 doi: 10.1088/2040-8986/aba138
[26]
Lu L, Dong Z G, Tijiptoharsono F, et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano, 2021, 15, 19722 doi: 10.1021/acsnano.1c07114
[27]
Santos G, Losurdo M, Moreno F, et al. Directional scattering switching from an all-dielectric phase change metasurface. Nanomaterials, 2023, 13, 496 doi: 10.3390/nano13030496
[28]
Moitra P, Wang Y Z, Liang X N, et al. Programmable wavefront control in the visible spectrum using low-loss chalcogenide phase-change metasurfaces. Adv Mater, 2023, 35, e2205367 doi: 10.1002/adma.202205367
[29]
Prabhathan P, Sreekanth K V, Teng J H, et al. Electrically tunable steganographic nano-optical coatings. Nano Lett, 2023, 23, 5236 doi: 10.1021/acs.nanolett.3c01244
[30]
Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv Sci, 2018, 5, 1800835 doi: 10.1002/advs.201800835
[31]
Shu F Z, Yu F F, Peng R W, et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide. Adv Opt Mater, 2018, 6, 1700939 doi: 10.1002/adom.201700939
[32]
Jia Z Y, Shu F Z, Gao Y J, et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide. Phys Rev Appl, 2018, 9, 034009 doi: 10.1103/PhysRevApplied.9.034009
[33]
Choi Y C, Lee D U, Noh J H, et al. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Funct Mater, 2014, 24, 3587 doi: 10.1002/adfm.201304238
[34]
Yu D Y W, Prikhodchenko P V, Mason C W, et al. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries. Nat Commun, 2013, 4, 2922 doi: 10.1038/ncomms3922
[35]
Ito S, Tanaka S, Manabe K, et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C, 2014, 118, 16995 doi: 10.1021/jp500449z
[36]
Wu P C, Pala R A, Kafaie Shirmanesh G, et al. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nat Commun, 2019, 10, 3654 doi: 10.1038/s41467-019-11598-8
[37]
Shcherbakov M R, Liu S, Zubyuk V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces. Nat Commun, 2017, 8, 17 doi: 10.1038/s41467-017-00019-3
[38]
Chýlek P, Zhan J. Absorption and scattering of light by small particles: The interference structure. Appl Opt, 1990, 29, 3984 doi: 10.1364/AO.29.003984
[39]
Lewin L. The electrical constants of a material loaded with spherical particles. J Inst Electr Eng Part I Gen, 1947, 94, 186 doi: 10.1049/ji-1.1947.0057
[40]
Moon C W, Kim Y, Hyun J K. Active electrochemical high-contrast gratings as on/off switchable and color tunable pixels. Nat Commun, 2022, 13, 3391 doi: 10.1038/s41467-022-31083-z
[41]
Yang W H, Qu G Y, Lai F X, et al. Dynamic bifunctional metasurfaces for holography and color display. Adv Mater, 2021, 33, e2101258 doi: 10.1002/adma.202101258
[42]
Song M W, Feng L, Huo P C, et al. Versatile full-colour nanopainting enabled by a pixelated plasmonic metasurface. Nat Nanotechnol, 2023, 18, 71 doi: 10.1038/s41565-022-01256-4
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 267 Times PDF downloads: 28 Times Cited by: 0 Times

    History

    Received: 14 December 2023 Revised: 08 March 2024 Online: Accepted Manuscript: 21 March 2024Uncorrected proof: 22 March 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shuo Deng, Mengxi Cui, Jingru Jiang, Chuang Wang, Zengguang Cheng, Huajun Sun, Ming Xu, Hao Tong, Qiang He, Xiangshui Miao. Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials[J]. Journal of Semiconductors, 2024, 45(7): 072302. doi: 10.1088/1674-4926/23120025 S Deng, M X Cui, J R Jiang, C Wang, Z G Cheng, H J Sun, M Xu, H Tong, Q He, and X S Miao, Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials[J]. J. Semicond., 2024, 45(7), 072302 doi: 10.1088/1674-4926/23120025Export: BibTex EndNote
      Citation:
      Shuo Deng, Mengxi Cui, Jingru Jiang, Chuang Wang, Zengguang Cheng, Huajun Sun, Ming Xu, Hao Tong, Qiang He, Xiangshui Miao. Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials[J]. Journal of Semiconductors, 2024, 45(7): 072302. doi: 10.1088/1674-4926/23120025

      S Deng, M X Cui, J R Jiang, C Wang, Z G Cheng, H J Sun, M Xu, H Tong, Q He, and X S Miao, Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials[J]. J. Semicond., 2024, 45(7), 072302 doi: 10.1088/1674-4926/23120025
      Export: BibTex EndNote

      Reconfigurable and polarization-dependent optical filtering for transflective full-color generation utilizing low-loss phase-change materials

      doi: 10.1088/1674-4926/23120025
      More Information
      • Author Bio:

        Shuo Deng Shuo Deng got his B.S. degree from the School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan, China, in 2022. Now he is an M.E. student under the supervision of Prof. Xiangshui Miao and Prof. Qiang He at the School of Integrated Circuits, HUST. His research focuses on phase change materials and structure color

        Qiang He Qiang He is currently an associate professor at the School of Integrated Circuits, HUST, Wuhan, China. He received his Ph.D. degree in Microelectronics and Solid State Electronics from HUST, in 2018. His research interests cover optoelectronic devices based on chalcogenide phase change materials, including phase change memory and tunable optical devices

      • Corresponding author: qianghe@hust.edu.cn
      • Received Date: 2023-12-14
      • Revised Date: 2024-03-08
      • Available Online: 2024-03-21

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return